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ABSTRACT

The safety and efficacy of drugs depend upon appropriate dosing of drugs made
possible by understanding the dispositional profile a drug will follow. A drug’s disposition
includes its absorption from an administration site, its distribution throughout the body, and its
elimination from the body, characterized by metabolism and excretion. Disposition is often
mediated by drug metabolizing enzymes and drug transporters. Alterations in the expression or
activity of metabolizing enzymes and transporters can therefore affect the safety or efficacy of a
drug and it is necessary to characterize their impact on every drug. The Biopharmaceutics Drug
Disposition Classification System (BDDCS) uses the extent of metabolism and solubility of
drugs to predict drug disposition, including when transporters and metabolizing enzymes are
clinically relevant. Here, we utilized observations from this system to predict the three major
routes of drug elimination (metabolism, renal excretion of unchanged drug, and biliary excretion
of unchanged drug). These predictions were made by integrating in vitro measurements of
permeability rate to predict the extent of metabolism with an in silico logistic regression model
we developed that uses calculated polarizability and predicted metabolic stability to predict
when poorly metabolized compounds will be eliminated in the urine or the bile. This approach
correctly identified 72 £ 9%, 85 + 2%, and 73 £ 2% of extensively metabolized, biliarily
eliminated, and renally eliminated drugs, respectively. We discuss the physiological context
through which permeability, polarizability, and metabolic stability may inform the major
elimination route. We further developed a model predicting BDDCS class using commercially
available in silico models of permeability rate to predict the extent of metabolism and dose
number to predict the solubility class. This approach correctly identified 54.1%, 57.8%, 69.3%,
and 45.2% of class 1, 2, 3, and 4 drugs, respectively, while in vitro approaches predict with
greater accuracy. We correct previously misclassified drugs, discuss reasons for
misclassification, incorporate more than 175 additional drugs into the system, and discuss how

BDDCS can self-correct when observed and predicted dispositional effects are not aligned. We
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conclude by reflecting on the demonstrated and potential applications of BDDCS and the

importance of predicting drug disposition.
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CHAPTER 1. INTRODUCTION

Pharmacotherapy has become a crucial aspect of improving and correcting human
health. Humans have seemingly always used natural resources to modify their physical and
mental health. The ancient Egyptians recorded a variety of herbal remedies to treat various
ailments in the Ebers Papyrus, for instance recognizing that herbs could be heated and inhaled
to treat asthma, while the Greeks used the lethal poison hemlock as capital punishment for
condemned prisoners, most notably Socrates. However, many substances do not so easily fall
into treatment versus poison categories. Foxglove (digitalis) can be used to treat congestive
heart failure, yet has also been used as a homicidal agent in higher doses. Some substances
are safe in very large quantities, such that it would be nearly impossible for a human to
consume toxic amounts, while others are so toxic that even the slightest dose can be fatal. Yet,
the puzzle that pharmaceutical scientists must solve is finding compounds and a dosing strategy
that maximize therapeutic benefit, while limiting risk.

The most fundamental understanding of dosing, then, relates to understanding the
balance between dose, effect, and toxicity. Every dosing scenario carries a degree of benefit
and risk. If a given dose is too small, there may be little risk of off-target effects, yet the drug
may be inefficacious. Alternatively, too large of a dose may give the desired effect, but could be
toxic, either because the drug has overcompensated for the defect it was attempting to correct,
or because it established too much off-target toxicity. A well-established and consistent dose is
therefore necessary to mediate the appropriate, yet safe, response. In fact, as early as 1240,
Frederic of Sicily ordered apothecaries to standardize their remedies(1). As time has
progressed, so too has drug standardization, such that the dose and contents of drug products
are now well-studied prior to dosing in humans and well-regulated before reaching the market.

By understanding these principles, scientists are able to predict appropriate doses that

will strike an appropriate balance between the benefits a drug can provide with the potential
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risks that a drug can incur. The ability to evaluate parameters of drug exposure, handling and

response has evolved into the fields of pharmacokinetics and pharmacodynamics.

ABSORPTION, DISTRIBUTION, METABOLISM, AND ELIMINATION

A drug’s safety and efficacy depends upon how the body handles the drug, referred to
as pharmacokinetics, as well as the effects that the drug has on the body, commonly called
pharmacodynamics. Scientists assess pharmacokinetics using the principles of ADME, an
acronym for absorption, distribution, metabolism, and elimination of drug. Together these
principles help develop safe and efficacious doses.

For a drug to be effective, it must become available at the target site. However, target
sites are often inaccessible and it is necessary to dose from a convenient location. The drug
must therefore be absorbed from a dosing site, often from the gastrointestinal tract since many
drugs are orally administered. Subsequently, the drug must distribute throughout the body until
some drug reaches the target site. However, because drugs are xenobiotics, the body will
attempt to protect itself by eliminating the drug; either by directly excreting it as the parent drug,
usually in the urine or the bile, or by metabolizing it to something generally easier to excrete.
Pharmaceutical scientists attempt to optimize each of these processes to ensure that drugs
reach their targets safely and efficaciously, yet with few off-target effects, and can be dosed on
a convenient schedule. These are affected by physiological factors and chemical properties of
drugs. Pharmaceutical scientists have invested a lot of research into understanding these
properties in order to predict disposition prior to developing a drug and testing it in humans.

ADME can be assessed with plasma concentrations over time. The area under this
curve (AUC) represents drug exposure, which is generally correlated with therapeutic response.
However, for some drugs, antibiotics for example, the maximum concentration (Cax) better
predicts therapeutic response. In other cases a relatively immediate response is required, when

using sleep-inducing hypnotics, for instance. Drugs of this nature must enter the systemic
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circulation and be able to access their target quickly, which means that the time to maximum
concentration (tmax) Mmust be short and that the drug must have properties that facilitate rapid
distribution to the target tissue (e.g. the brain).

The primary goal of pharmacokinetics is to select an appropriate dose. AUC is the
clinical output from which clearance and volume of distribution, the primary pharmacokinetic
parameters, can be calculated. Clearance and volume of distribution contribute to dose
selection and regimen along with bioavailability. When conditions are non-normal,
pharmaceutical companies, physicians, or pharmacists must know how to adjust the dose.
Changes in AUC reflect changes in clearance or distribution. By understanding how different
factors impact disposition, we can deduce the mechanism of the observed exposure change
and appropriately amend the treatment regimen.

Each aspect of ADME can be regulated by the active impact of metabolizing enzymes
and/or drug transporters. Other factors such as blood flow, membrane permeability, pH, protein
binding, and endogenous substances all play a significant role as well. There is significant
variation in the expression and activity of metabolizing enzymes and drug transporters in
healthy individuals. The impact of this variation is studied in a field called pharmacogenomics. In
addition to native variation in the behavior of metabolizing enzymes, transporters, blood flow,
protein binding, permeability, and pH, other drugs, supplements, disease, and even food can
alter a drug’s activity. These factors can also result in transient physiological changes that may
impact a drug’s disposition.

Certain diseases such as chronic kidney disease can have a large impact on drug
disposition by affecting the concentrations of endogenous compounds, which can interact with
drugs, or affecting physiological aspects like blood flow or protein binding. For instance, in renal
disease, the ability to eliminate and clear drug is directly impacted by decreased renal function.
Meanwhile, structural and physiological changes and decreased CYP3A expression(2) in

patients with Celiac’s disease may potentially alter drug absorption(3). Other diseases including,
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but certainly not limited to, diabetes, cystic fibrosis, cancer, and congestive heart failure can
significantly impact a drug’s disposition.

Understanding how physiological systems change with disease and how interindividual
differences, either biological or due to external factors such as copharmacy, will impact which
drugs helps pharmaceutical companies develop safer, more efficacious prescriptions with a
clearer understanding of necessary alterations in dosing recommendations. In fact,
pharmacokinetics was once a leading cause of drug failure during development, but is no longer
a significant concern due to our improved understanding of drug disposition(4,5).

With greater understanding of pharmacokinetics and disposition comes the ability and
convenience of predicting drug disposition prior to dosing in humans. Each process is
associated with quantitative predictive preclinical animal models, in silico models varying in
complexity from simple physicochemical predictors to complex machine learning methods, or in
vitro models generally representing a simplified model of a dispositional organ, e.g. hepatocytes

for predicting metabolism.

CURRENT ISSUES AND CHALLENGES IN PHARMACOKINETICS

Drugs can be administered through a myriad of routes. These include, but are not limited
to, topical, optical, injections (including intramuscular, subcutaneous, or intravenous), or oral
administration. Intravenously administered drugs are directly administered to the blood and
therefore the entire dose is available for distribution in the body. However, drugs administered
by any other route must pass some barriers before entering the blood, in a process called
absorption. Naturally, a percentage of the drug cannot pass through the barriers and is lost
between the site of absorption and the blood. This loss depends on both the barrier that must be
crossed as well as properties of the drug.

Some membranes are leakier than others, while some are perfused by higher blood

flow. Other differences include higher or lower fat content, pH differences and variation in the
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expression of transporters and metabolizing enzymes. This makes a difference in how a drug
can be administered. For instance, insulin is generally administered subcutaneously, but can
also be inhaled because of the relatively high permeability of the alveolar epithelium(6). Insulin
cannot, however, be absorbed from the gastrointestinal tract due to degradation by proteolytic
enzymes and an inability to be transported(7).

Metabolism dominated the understanding of drug disposition for a very long time.
Eventually, scientists began to realize that drug transporters, initially called phase Il
metabolism, have an equally important role in drug absorption, distribution, and elimination.
Hundreds of drug transporters have been identified in humans(8), but currently at least 7 are
considered clinically important in regulating drug disposition. The FDA 2012 guidance on drug
interactions(9) recommends determining if a drug is a substrate, inhibitor, or inducer of P-gp and
BCRP for all drugs; OATP1B1 and OATP1B3 if a drug is hepatically eliminated; and OAT1,
OATS3, and OCT2 when a drug is renally eliminated. However, other transporters such as
MATESs are considered clinically relevant by the International Transporter Consortium (ITC),
which recommends prospectively studying MATE interactions. The ITC recommends that MRP2
and BSEP be evaluated in retrospective studies depending on clinical and preclinical
observations. Other transporters such as OATP2B1, ENTs, and PEPTs are also considered
clinically relevant(8,10). Other drugs, high-fat food or components in food, endogenous
substrates, disease, and genetics can alter the function of these and other transporters. Since
transporters often highly regulate drug exposure in the systemic circulation and tissues as well
as play a role in drug elimination, when their function is altered, the safety and efficacy of a drug
can be compromised. We will discuss when transport is relevant to the clinical outcome of a

drug, as well as many cases when it is not.
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Predicting Oral Absorption and Availability

Most drugs are preferably administered by the oral route to increase patient compliance
and facilitate delivery. Before a drug can enter the systemic circulation after oral dosing, it must
a) be absorbed in the gut, where it may be affected by apical uptake and efflux transporters b)
pass through gut epithelial cells (enterocytes) where it may be metabolized, and then c) escape
from metabolism or biliary elimination in hepatocytes. The combination of these processes
determines the bioavailability of the drug, or the fraction of the dose that enters systemic
circulation.

In humans, bioavailability (F) can be readily measured by comparing exposure from
intravenous and oral dosage forms: F = AUC,./AUC,,, correcting for dose if necessary.
However, it is very difficult to predict the fraction of the bioavailability due to absorption (F,), and
thus the extent of absorption because although the hepatic bioavailability (Fy) can be estimated
when an intravenous dose is given and total and renal clearance is measured [Fy = 1 - CL4/Qp,
where hepatic blood clearance (CLy) equals total blood clearance (CL) minus renal blood
clearance (CLr) and Qy is than estimate of hepatic blood flow rate], separating the fraction of
the dose that is absorbed and the fraction of the dose that escapes gut metabolism since
F = Fa*Fs*Fy where Fgis the gut bioavailability, requires invasive methods such as sampling
from the portal vein. The rate and extent of absorption depends upon the physicochemical
properties of the active component in a drug product, the formulation and release of the drug-
product, and physiological traits of the gastrointestinal system.

Additionally, microbiotic metabolism and luminal degradation of drug can reduce the
proportion of the parent drug that is available for absorption. Even after initial absorption, a drug
can be effluxed by transporters in the enterocytes, effectively reducing absorption.

Drug absorption can be mediated through passive or active permeation across
(primarily) enterocytes. Passively absorbed compounds can transcellularly diffuse (through the

cell) or paracellularly diffused (between the cells). Active permeation requires the intercession of

6

www.manaraa.com



drug transporters, which can move a drug across either side of a polarized cell membrane.
Active transporters are responsible for either bringing the drug into a cell or ejecting it from a

cell.

Physicochemical Determinants of Absorption

It is generally presumed that lipophilicity correlates with cell permeability, within a
reasonable boundary and when considering structurally similar compounds. In 1997, Lipinski et
al.(11) developed a set of rules that aided in understanding the properties of drugs that are
readily absorbed. Poor absorption is more likely when a drug has greater than 5 hydrogen bond
donors (OH and NH), a molecular weight > 500 Da, cLogP > 5, or greater than 10 hydrogen
bond acceptors (oxygens and nitrogens). However, this rule does not apply when transporters

mediate drug absorption.

Passive Absorption

Passive absorption generally refers to the diffusion of compounds that have properties
that allow them to cross through a cell (transcellular). Drugs can only pass transcellularly if they
are small and relatively lipophilic. Compounds that instead pass between cells (paracellular

permeation) may be small and hydrophilic.

Transported-Mediated Absorption

Most compounds are known or presumed to be substrates of transporters, even if they
can also be passively absorbed. Uptake transporters are responsible for mediating absorption
into a cell, while efflux transporters help to remove a drug from a cell. In gut absorption, apically
expressed uptake transporters facilitate absorption, while apically expressed efflux transporters
counteract absorption. However, highly permeable, highly soluble compounds are not

dependent upon transporters for their absorption even if they are substrates and will not be
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impacted by disruptions of transporter function. This will be discussed in great detail throughout

this chapter.

In Vitro Predictions of Absorption

The Biopharmaceutics Classification System, as we will discuss later, opened the door
to predicting absorption with surrogate in vitro systems, such as Caco-2 and MDCK. The
Biopharmaceutics Drug Disposition Classification System (BDDCS) allowed us to do the same
with artificial membranes such as PAMPA. Compounds with a high in vitro permeability rate are
expected to be well absorbed.

Caco-2, an immortal cell line derived from colorectal adenocarcinoma cells, come from
human enterocytes. They confer the advantage of being human in nature with a microvillus
surface. However, these cells take 2-3 weeks to culture, and even then do not fully express
transporters or metabolizing enzymes. Additionally, tight junctions predominate and resistance
is high compared to in vivo morphology(12). This can lead to significant underprediction of
permeability rate and absorption. The in vitro lack of expression of highly expressed
transporters in humans can greatly underpredict the extent of absorption(13).

MDCK (Madin Darby Canine Kidney) cells are immortal cells that come from the kidney
of dogs. These cells have a shorter culture time than Caco-2 and have lower resistance than
Caco-2 cells, a condition more similar to the human gut. However, these cells are not human in
nature and, similar to Caco-2, they poorly express CYP3A.

PAMPA (Parallel artificial membrane permeability assay) is an artificial membrane that
does not express transporters and has no cells to create tight junctions or cellular pores. It is
representative of passive permeability through a lipid bilayer.

All in vitro models lack the flow of gut contents and blood on either side of enterocytes.
Portal blood flow constantly removes drug from the basolateral membrane of enterocytes,

resulting in “sink conditions”, a downhill concentration gradient that facilitates drug absorption in
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vivo. The fluidity of gut contents means that drug in the gut lumen will be exposed to the
different morphologies and expressions in different segments of the gut in vivo that is not
simulated in in vitro cell studies.

While highly permeable compounds are almost all extensively absorbed, in vitro
permeability rate predictions often under-predict absorption. This is because many compounds
are actively absorbed, but have low passive permeability. Predicting extent of absorption is
improved by including active drug transport. Larregieu et al.(13) show that when transporter
expression is decreased more than 10 fold in Caco-2 cells compared to humans, absorption of
compounds that are substrates of highly expressed transporters such as PEPT1, amino acid

transporters, and nucleoside transporters are poorly predicted.

Predicting Distribution

Once a drug is systemically available, it is distributed throughout the body. Some drugs
are liable to remain in circulation, with little distribution, while others have an affinity toward
promiscuous distribution throughout many tissues, even those that are poorly perfused by blood
flow. A particular challenge for pharmaceutical scientists is understanding to which tissues a
drug may or may not be distributed, and either targeting or avoiding those tissues to maximize
effect or minimize off-target toxicity. The central nervous system is a common concern due to
difficulty in obtaining exposure when necessary, or undesired exposure resulting in central side
effects for peripherally acting drugs.

Drug distribution is determined by physiologic characteristics such as cardiac output,
tissue blood flow and volume, and capillary permeability, as well as tissue permeability and drug
transporters. Following drug dosing, well-perfused tissues such as the liver and kidney initially
receive a high drug concentration. This initial distribution phase is apparent when considering
the shape of a plasma concentration profile. A secondary distribution phase, characterized by

slowly decreasing plasma concentrations, reflects drug distribution to the more poorly perfused
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tissues. Additionally, protein-bound drugs cannot traverse cellular membranes and therefore
protein binding has an impact on drug distribution. In the plasma, drugs primarily bind to either
albumin, if the drug is acidic, or a-1-acid glycoprotein, if the drug is basic. Protein binding can be
modified by disease and drug-drug interactions. For instance, patients with cystic fibrosis often
have hypoalbuminemia(14). However, Benet and Hoener(15) have shown that changes in
protein binding are only important for high clearance, narrow therapeutic index drugs that are

dosed intravenously, e.g. lidocaine.

Volume of Distribution

Distribution can be characterized by the theoretical pharmacokinetic term, the apparent
volume of distribution. This term characterizes the apparent space in the body into which a drug
distributes. That is, systemic concentration multiplied by the apparent volume of distribution is
equal to the amount of drug in the body. A large volume of distribution indicates that a
compound is predominantly located outside of the sampling space (plasma); that is outside of
systemic fluids flowing to the organs of elimination. Volume of distribution depends on how
much of a drug binds to receptor sites, plasma proteins, and tissues, as well as the lipophilicity
of a drug. Volume of distribution measures can be determined from plasma concentration-time
curves. While the volume of distribution can be calculated a few ways, the volume at steady
state or Vg, is the most useful measure of the apparent space available in the body into which
drug may distribute, since it is not affected by elimination. Vs measures can be determined from

plasma concentration-time curves using the following equation:

Here, AUMC is the area under the moment curve, or the area under the curve of the

product of concentration and time versus time.
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Additionally, physiologically based PK (PBPK) models such as GastroPlus™ and
Simcyp provide estimates of V. Age, percent of body fat, sex, and disease can all affect the
volume of distribution. Accurately predicting volume of distribution is vital in predicting Cnax and
can be important in defining clinically relevant half-life (t1,) measures. Volume of distribution is
also predicted in animal models, which include physiological features like blood flow and organ
topology. The volume of distribution can be estimated by collecting plasma concentrations over

time and using allometric scaling approaches to predict the volume of distribution in humans.

Predicting Metabolism and Elimination

Most drugs are eliminated by metabolism, renal elimination of unchanged drug, or biliary
elimination of unchanged drug. To ensure safety, pharmacokinetic studies are conducted with
mass balance, or collection of the entirety of a dose in eliminated equivalents (parent drug or
metabolites). Ideally, the entirety of the dose is eliminated in either the urine or the bile. This
provides evidence that the compound is not sequestered and accumulating in a peripheral
tissue, potentially resulting in unanticipated toxicity, and lends support to the validity of the
calculated pharmacokinetic parameters. Incomplete recovery sometimes indicates that a drug is
eliminated by another organ (e.g. the lungs). However, mass balance may not be as simple as it
sounds. Realistically, the entirety of the dose often cannot be collected. Some drugs have very
long half-lives, which makes collections in a clinical setting unrealistically arduous.

Many metabolites and some parent drugs are eliminated in the bile, which is a difficult
fluid to accurately obtain and analyze. The bile drains into the lumen of the intestine and its
contents are eventually eliminated in the feces. Fecal samples could be collected to estimate
the fraction of the dose that is eliminated in the bile. However, the feces also contain orally
administered material that was never absorbed from the lumen of the intestine. For this reason,
it is impossible to differentiate between parent drug that is unabsorbed from an oral

administration and parent drug that is eliminated in the bile in fecal samples. This means that,
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unless a drug was administered non-orally and all of the drug in the feces must therefore come
from biliary excretion, direct bile collection approaches such as collection from t-tubes or
nasobiliary tubes are necessary to account for the elimination of unchanged drug in the bile.
However, such procedures are rarely conducted and are done during surgeries. The patients
often have hepatobiliary disease, so the donor samples do not necessarily represent healthy
conditions. Other methods such as the bile string or duodenal collection studies are slightly less
invasive and can be conducted with healthy volunteers. Duodenal collection studies are difficult
to conduct however, and are still invasive.

It is much easier to determine the extent of urinary elimination of unchanged drug or the
extent of metabolism. Urine samples are almost always collected during pharmacokinetic
studies to account for mass balance and the parent drug and metabolites can be readily
quantified. Parent drug collected in the urine represents absorbed drug only since the drug can
only reach the kidneys after entering the systemic circulation. Metabolites can be quantified in
the urine and may also be collected in feces. If the drug was not degraded or metabolized by
bacteria in the gut, we can assume that the drug was absorbed since most metabolism occurs
post-absorption. Degradation and presystemic metabolism can be confirmed with stability
studies as will be described in a later section.

Prior to conducting trials in humans, pharmaceutical scientists predict what will be the
major route of drug elimination. In silico, in vitro, and in vivo models of drug elimination have
been developed to predict elimination routes and their potential liabilities. For instance, biliarily
eliminated drugs may be subject to enterohepatic recycling, which exposes the drug to the
intestine and liver multiple times and may result in several plasma concentration peaks.
Metabolism may produce pharmacologically active or toxic metabolites that can alter
pharmacodynamics or need to be evaluated for safety. A developer may want to avoid renal

elimination if the drug is likely to be dosed to patients with failing kidneys. Alternatively, an
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eliminating organ may be the desired site of action and a developer may attempt to target that
route.

Recently there have been many efforts to associate the chemical properties of drugs
with their major elimination routes. Certain trends have been noted for a long time, with
properties such as lipophilicity, molecular weight, protein binding, and ionization state lauded as
harbingers of elimination route. However, these rules are sometimes considered too simple, or
were applied to small datasets of compounds that are often structurally similar. With the advent

of “big-data” methodologies, more complicated and/or thorough analyses are possible.

Characteristics of Metabolism

Most drugs are designed to be sufficiently lipophilic to cross biological membranes
during absorption or distribution and to achieve biochemical potency by encouraging binding to
a target site through hydrophobic interactions. Coincidentally, most drugs are metabolized, and
indeed, lipophilicity is historically considered a characteristic of drug metabolism.

There at least a couple of reasons why lipophilicity and metabolism are associated with
each other. The first is that relatively lipophilic drugs may be able to be passively reabsorbed
across membrane barriers surrounding excretory fluids including the aqueous bile and
urine(16). Metabolic enzymes generally convert a lipophilic substance into a more hydrophilic
substance, which aids in retention in and thus elimination from the body in aqueous bile or
urine. Secondly, lipophilicity is correlated with protein binding(16), and may aid in binding to
enzymatic proteins through hydrophobic interactions(16), which will convert a drug to a more
hydrophilic molecule.

Many very lipophilic molecules are indeed metabolized, and in fact we do not know of
any marketed poorly metabolized drugs with a measured or calculated LogP > 5(17). As always,
it is important to note that these are trends and not rules. Despite the common assumption that

metabolized compounds are lipophilic and vice-versa, metabolized compounds cover a vast
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physicochemical space and not all lipophilic compounds are metabolized. In particular, drugs
that are eliminated unchanged in the bile also exhibit relatively high LogP values(17) (Chapter
3), with no significant LogP difference from metabolized compounds as determined by the t-test
and no rank-ordered differentiability as indicated by receiver operating characteristic curves'.
Furthermore, a large proportion of metabolized drugs have a low LogP. This may be because
drugs eliminated unchanged in the bile require uptake and efflux transporters in the hepatocyte,
and therefore must be sufficiently lipophilic to bind to these transporters. Alternatively, almost all
compounds eliminated as unchanged drug in the urine have a low LogP and are poorly bound
to proteins.

However, given the somewhat ambiguous predictability of LogP, it is necessary to
predict which compounds will be metabolized by other methods. Metabolism can be assessed

using in vitro, in vivo, or in silico methodology.

In Vitro Predictions of Metabolism

The extent, rate, and mechanisms of metabolism are often initially evaluated in vitro.
Ideally, human hepatic and enterocytic tissues can be utilized to evaluate metabolism. However,
these merely serve as predictive tools, and are fraught with errors.

Microsomes are a subcellular fraction containing the contents of the endoplasmic
reticulum including CYPs and UGTs. CYP metabolism accounts for about 70% of the
metabolism of extensively metabolized drugs of the top 200 drugs(18), while UGT metabolism
accounts for about 14% of the metabolism of the top 200 drugs prescribed in the United
States(19).

In vitro microsomal experiments can determine the intrinsic clearance (CL;y),

representing the capacity of metabolizing enzymes to eliminate a compound in the absence of

' The receiver operating characteristic is a plot that illustrates how well a continuous features (e.g. LogP) classifies a binary outcome
(e.g. biliary versus metabolic elimination). When the area under the ROC curve is greater than 0.8, the continuous features is
expected.to differentiate between.the classes well.
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other factors like blood flow, protein binding, membrane permeability, and competing elimination
mechanisms.

Intrinsic clearance can be expected to correlate with clinical clearance in humans,
particularly for drugs that are primarily metabolized by CYP enzymes in the liver. Prior to the
acknowledgment of the contribution of transporters in drug disposition, human clearance was
estimated from intrinsic clearance in microsomes generally using the well-stirred model.
However, Miyauchi et al. proposed an extended clearance concept to include the effect of
transporters on hepatic clearance(20).

Microsomes provide a reliable estimate of metabolic kinetics (clearance). However,
microsomes have been used to predict the extent of metabolism by measuring the percent of
dosed drug that is unmetabolized after a set period of time. They may be unreliable predictors of
the extent of metabolism(21-23) since presumably most drugs will be metabolized if they are left
to incubate in the presence of a variety of enzymes without interference. As we will discuss in
detail later, in vitro permeability rate can predict the extent of metabolism in humans.

Supersomes, expressing only one enzyme, may be used to predict the metabolic
intrinsic clearance by a single enzyme and to identify metabolites formed by a specific enzyme.

A major concern of predicting the extent or rate of metabolism in vitro, perhaps
especially in microsomes, is that it assesses metabolism in isolation of competing processes. In
vivo, transport-limited clearance into the bile or passive or transport-limited clearance into the
urine may prevail. However, microsomal incubations cannot tell a researcher what is the major
route of elimination and metabolic clearance does not necessarily relate to the extent of
metabolism. Isolated or sandwich cultured hepatocytes are more complex tools that incorporate

transporters and may be used to predict metabolic or hepatic clearance.
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In Vivo Predictions of Metabolism

In vivo approaches confer the advantage by including factors such blood flow,
sequestration due to transport, and membrane permeability. In vivo approaches include
humanized animals and allometric predictions. Humanized animals, like supersomes, can help
assess the impact of a single enzyme or transporter.

Allometry applies scaling factors based on body size to pharmacokinetics across
species. Simple allometry from a single species is commonly used early in drug development,
requiring only clearance data from preclinical species. Modifications to simple allometry have
been proposed to improve the predictability of these models(24).

These predictions require sampling plasma concentrations over time in preclinical animal
models and may incorporate other physiological parameters such as plasma protein binding and
the blood to plasma ratio. They can be supplemented with physicochemical drug properties
such as molecular weight or LogP.

The most obvious disadvantage to using preclinical animal models are physiological
differences. While allometry attempts to correct for differences in body weight, protein binding,
blood flow, etc., animals often have different patterns of metabolizing enzyme and transport
expression and substrate specificity. While pharmacokinetics are frequently similar between
species, marked differences can be seen for a variety of substrates. Consider, for instance,
digoxin or zidovudine. Digoxin is extensively metabolized in rats(25), but is primarily eliminated
as unchanged drug in humans(26). Zidovudine is extensively metabolized in humans(27), but is

primarily eliminated unchanged in rats(28).

In Silico Predictions of Metabolism
Several in silico methods predict aspects of metabolism, including understanding the
affinity for a particular enzyme(29), the site of metabolism on the molecule(29), predicting

metabolic clearance(30), identifying metabolites(31), or predicting metabolic stability(32).
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Unfortunately, many of the published methods rely on proprietary descriptors or are derived
from small or structurally similar compound datasets(33). Since many compounds are
metabolized by several enzymes and/or are sequentially metabolized, it is crucial to integrate
many predictive models. Several reviews discuss the challenges and applications of in silico
predictions of drug metabolism in depth and discuss available predictive software(29,31,33).
Second to metabolism, renal elimination of unchanged drug is responsible for the

elimination of most drugs.

Renal Elimination of Parent Drug

Renal elimination of drugs is dependent upon three renal processes: glomerular
filtration, renal secretion, and renal reabsorption. Glomerular filtration is a passive process
where free (unbound) small molecule compounds are drained from blood in the afferent arteriole
and collected in the filtrate. Large molecules, including drugs bound to proteins, cannot sieve
through the glomerulus and remain in circulation. While glomerular filtration rate = 120 mL/min,
urine is only formed at 1 mL/min, so 119 mL of water is reabsorbed from the kidney tubules
every minute. For this reason, many compounds, especially metabolized compounds, are
passively reabsorbed from the filtrate as water is actively retained in the body. Several
compounds are actively secreted into the filtrate directly from the blood via drug transporters
expressed on the proximal tubule.

Renal clearance of drugs tends to decrease with increasing lipophilicity(34). This is
intuitive, since highly lipophilic compounds are often susceptible to reabsorption. Additionally,
lipophilic compounds are more likely to be protein bound(16). Unsurprisingly, compounds that
are primarily eliminated as unchanged drug in the urine are expected to be small and polar,
having low protein binding. However, Hosey et al. demonstrated that while this holds true for
orally dosed compounds, many non-orally dosed (generally intravenously administered)

compounds could be renally eliminated even if the molecular weight is high. Alternatively,
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protein binding of compounds primarily eliminated in the urine was low for both orally and non-
orally administered medications(23). This is likely because all small molecules (<10,000 Da)(35)
can be filtered through the glomerulus, but compounds bound to proteins are always filtered out.
Therefore, highly protein bound drugs must be eliminated by other routes and protein binding is
a determinant of renal elimination.

While charge does not determine if renal elimination is the primary route of
elimination(23), it does trend with renal clearance. Anions and cations are primarily secreted,
whereas neutral compounds are primarily reabsorbed. Additionally, lipophilicity tends to
decrease with increasing renal clearance, while polar descriptors increase with renal

secretion(34).

Biliary Elimination of Parent Drug

Biliary elimination of unchanged drug accounts for the third major route of drug
elimination. Biliary elimination is an active process requiring both uptake transporters on the
hepatic basolateral membrane facing blood in the portal vein and efflux transporters on the
hepatic apical membrane facing the bile canalicula.

Historically, it was hypothesized that high molecular weight (> 500 Da) anions would
preferentially be eliminated in the bile, and that biliary excretion was selective for these
properties. This was likely derived by considering the weight and molecular species of the
primary endogenous substrates, e.g., bile salts. Millburn et al.(36) suggested that drugs with a
molecular weight less than 500-600 g/mol were less susceptible to biliary elimination. More
recently, Yang et al.(37) predicted when anions have molecular weights greater than 475 Da,
10% or more of the dose is likely to be eliminated in the bile. We demonstrate in chapter 2 that
drugs whose major route of elimination is unchanged drug in the bile were poorly permeable,
and had a high polarizability, which is highly correlated with molecular weight, and a low

predicted metabolic stability(17,23). Our study also points out that high molecular weight is
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descriptive of biliarily eliminated drugs, but that high molecular weight does not qualify biliary
elimination. In other words, almost all drugs that are predominantly eliminated as unchanged
drug in the bile have a high molecular weight, but the primary route of elimination is not biliary
excretion for the majority of high molecular weight drugs

Other properties associated with biliary elimination have been less clearly defined and in
some cases exhibit contesting associations between studies. Greater hydrogen bond
interactions have been associated with increased biliary excretion(37,38). Some studies indicate
that biliarily eliminated compounds are primarily anions(37,38), while some indicate that cations
are also eliminated in the bile(39), and yet others suggest that ionization is not an important
characteristic(23). Greater dipole moments(37,39), the presence of carboxylic acid
group(37,39,40), and more rotatable bonds(38,40) have also been associated with increased
biliary excretion. Lipophilicity results yield varying indications between studies, with some
indicating that biliarily eliminated drugs are hydrophilic(38,39), some indicating they are
lipophilic(17,41) and others discussing both lipophilic and polar regions, and some studies
finding no relationship between lipophilicity and extent of biliary elimination(37,42). While the
bile is a hydrophilic medium, compounds likely require a degree of lipophilicity to bind to and be
transported by drug transporters such as P-gp. This may be especially true as the most widely
accepted mechanism of P-gp transport relies on an initial partition into the membrane(43).
These relationships likely depend on how “major” biliary elimination was defined and which
drugs were included in the study.

As we mentioned earlier, biliary elimination is difficult to gather and quantify in humans.
However, in vitro, in vivo, and in silico approaches may provide a reasonable quantitative or
qualitative understanding of biliary elimination.

Perhaps the most widely accepted in vitro approach to predict biliary clearance is the
use of sandwich-cultured hepatocytes, isolated from humans or rats, which maintain the polarity

of cell membranes, a crucial condition to determine canalicular efflux. These hepatocytes are
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plated on a collagen platform and maintained in the presence of calcium. After several days,
transporter expression is optimized for vectorial transport. After introducing the test drug, the
tight junctions are ruptured by removal of calcium and differences in accumulated intracellular
concentrations can be measured(44).

In vivo, one of the most common approaches to estimate the contribution of biliary
elimination is with bile duct cannulation in an isolated perfused rat liver. Unfortunately, rats have
a higher bile flow (relative to body weight)(45), efflux transporter expression(46), and rate of
efflux(47) so more compounds are eliminated in the bile at greater concentrations and rats are
not altogether reliable models.

The approaches described above are useful and necessary tools to predict drug
disposition prior to human dosing. These approaches can eliminate drugs from development
that are unlikely to be successful in the clinic for reasons such as insignificant absorption,
distribution to undesired tissues or a lack of distribution to necessary tissues, unacceptably fast
elimination, which might require too frequent dosing, or unacceptably slow elimination, which
may result in drug accumulation. BDDCS can supplement and improve upon these predictive

approaches by making qualitative ADME predictions.

BIOPHARMACEUTICS DRUG DISPOSITION CLASSIFICATION SYSTEM

Using empirical observations of clinical data, Wu and Benet(48) developed a system that
has the ability to make many qualitative predictions for each process in ADME. The
Biopharmaceutics Drug Disposition Classification System (BDDCS) is a model that uses known
disposition characteristics of currently or previously approved drugs to predict what biological
and external factors can alter a drug’s ADME and how they will do so. Perhaps the most
significant advance of BDDCS is predicting when a drug transporter will be clinically relevant in

regulating the disposition of a drug.
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In 1995, Amidon et al.(49) proposed the Biopharmaceutics Classification System
(Figure 1-1), a scheme that used “permeability rate” and solubility to characterize drugs into 4
classes, and then employed in vitro dissolution methodology to predict drug bioavailability. This
was based on an apparently good correlation between human jejunal permeability in single-
pass perfusion studies and the fraction of dose absorbed across the gut wall(49). Since its
development, the U.S. Food and Drug Administration (FDA), European Medicines Agency
(EMA), and World Health Organization (WHO) have implemented its principles to grant
biowaivers to some highly soluble drugs. While most drugs require clinical bioequivalence
studies to demonstrate similar exposure to the original product any time a drug is manufactured
at a new site, is formulated differently, or is synthesized by an altered method, biowaivers grant
regulatory approval to certain immediate release drug products based on solubility and

dissolution studies and permeability criteria.
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Figure 1-1. The Biopharmaceutics Classification System.

BDDCS was initially proposed when Wu and Benet(48) recognized that compounds with
a high passive intestinal permeability rate as defined by BCS were extensively metabolized,
while drugs eliminated in an unchanged form in the urine or bile were primarily poorly
permeable in BCS. In this seminal publication, they suggested that extent of metabolism might
serve as an appropriate surrogate for absorption and/or intestinal permeability when those data
are unavailable, since the extent of metabolism is easier to assess than intestinal
permeability/absorption, thus expanding the number of class 1 drugs available for a biowaiver.
Therefore this system substituted the extent of metabolism for permeability in its classification

(Figure 1-2). Importantly, the modified system was also used to predict drug disposition,
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especially when predicting when transporters or metabolizing enzymes are clinically relevant,

for which it is most appreciated today.
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Figure 1-2. The Biopharmaceutics Drug Disposition Classification System.

The extent of drug metabolism is often quantified during phase | pharmacokinetic/mass
balance studies(50). Tabulating absorption, on the other hand, requires invasive intestinal
perfusion studies in man or portal blood sampling. Absorption is a prerequisite to enzymatic
metabolism, which occurs intracellularly in the endoplasmic reticulum or cytosol. Therefore, we
can assume that enzymatically metabolized drugs are absorbed. Since metabolism is easier to
quantify than absorption/intestinal permeability rate, Wu and Benet proposed that metabolism

be used as an alternative measurement to predict absorption. The EMA and recently the
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FDA(51) have incorporated this suggestion into the guidance recommendations for granting
biowaivers and highly soluble compounds with 285% metabolism are eligible for biowaivers.

When BDDCS was developed, a primary observation was that there was a very
dichotomous extent of metabolism. Drugs tend toward a primary route of elimination.
Specifically, metabolism tends to contribute greater than 70% of total drug elimination for
extensively metabolized drugs, or less than 30% for drugs that are eliminated as unchanged
drug. There are few (< 5%) examples of drugs being eliminated with an intermediate extent of
metabolism.

BDDCS differs from BCS in two major aspects: 1) the primary goals of the systems and
2) the definition, interpretation, and relationship of “highly permeable drugs”.

The primary goal of BCS is to grant biowaivers using in vitro methodology to predict drug
absorption and its limiting steps. Alternatively, while BDDCS provides the basis for
recommending biowaiver extension to extensively metabolized compounds, the primary goal of
BDDCS is to predict drug disposition.

Via application of BCS, biowaivers are approved based on extent of absorption, which
may not always correlate well with intestinal permeability rate. While high permeability rate
predicts a high extent of absorption, the opposite is not necessarily true. There are many
examples of highly absorbed drugs that have a poor passive permeability rate, not reflecting
their high absorption extent(52,53). For example, sotalol, a BDDCS class Il drug, is poorly
permeable in Caco-2 cells, but has an absolute bioavailability of 98%, and thus, is highly
absorbed(54-56). Its high absorption is likely mediated by transport(57) since it has a poor in
vitro permeability rate, but is a substrate for the gut uptake transporter OATP1A2(58). While
some drugs are considered highly permeable in BCS because of their high absorption, they are
not, in fact, highly permeable. This is, in fact, the basis of a major difference between BCS and

BDDCS. Specifically, BCS class 1 and 2 compounds may be class 3 or 4 in BDDCS, since
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drugs are classified by metabolism extent, and not absorptive extent. These differences are
crucial in predicting drug disposition.

BDDCS is invaluable during drug development because understanding the effect of
transport and metabolizing enzymes is now essential for drug approval. Specifically, new drug
applications (NDAs) must include the major routes of drug elimination, the quantitative
contributions of enzymes and transporters, and drug-drug interaction studies(9). BDDCS can
alert developers to which enzymes and transporters are likely important, and may even justify
negating some studies.

BDDCS does not predict quantitative values of drug disposition. It can, however, provide
qualitative information about the absorption of some compounds, the extent of metabolism, the
extent of biliary or renal elimination of unchanged drugs, and distribution. More accurately, it
predicts what processes, i.e. transport at specific membranes and/or metabolism, will affect
each aspect of disposition and the direction of the effect.

BDDCS predicts when a transporter or a metabolizing enzyme can clinically regulate the
disposition of a drug, whether or not the drug is a substrate. When BDDCS predicts that drug
transport at a membrane is not clinically relevant for a particular drug, it does not presume that
the drug is not a substrate for a transporter. In fact, it is likely that almost all drugs are
substrates for transporters. Instead, BDDCS predicts if a transporter significantly contributes to
the disposition of a drug compared with passive diffusion. These effects are perhaps most
obvious in clinical studies examining the effect of transport inhibition on drug absorption,
distribution, metabolism, and elimination. In cases where a transporter or metabolizing enzyme
is important in a drug’s disposition, affecting one, e.g. by inhibiting transport, can cause clinically
significant pharmacokinetic changes to elimination, bioavailability, or distribution, observed as
changes in the plasma concentration versus time curve (AUC, Cnax, tmax) and altering the
parameters CL, V, or F that define dose. These changes may impact the safety or efficacy of

the drug, resulting in a dose change. If inhibition of transport does not cause dispositional
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changes enough to necessitate a dosage change, the transporter is not considered clinically
significant in the drugs’ disposition.

BDDCS predicts that extensively metabolized/highly soluble class 1 drugs are not
clinically relevant substrates of drug transporters, even if in vitro evidence shows an affinity
(Figure 1-2). In other words, while these drugs may have a biochemical affinity to transporters,
the contribution of the active transporter to permeation across a membrane is minor compared
to passive permeability, and any functional discrepancy of the transporter will not result in a
significant change that requires dose adjustment to achieve safety or efficacy. For class 1
drugs, in vitro studies can provide a false positive predictive transporter interaction that studies
in vivo or in humans are unlikely to replicate these results(59). /n vivo or clinical interaction
studies are costly and time restrictive. The FDA guidance recommends that P-gp and BCRP be
evaluated as transporters for every drug, yet acknowledges that it may not be necessary for
BCS class 1 drugs and sponsors may submit class 1 drugs without transporter data(9). This
would more appropriately be acknowledged for BDDCS class 1 drugs, since some BCS class 1
drugs (e.g. sotalol) may be subject to transporter interactions.

Furthermore, BDDCS does not presume to predict that there will be an interaction for
every drug in a class, but rather that an interaction could exist, and should be tested during

development. Finally, BDDCS makes no predictions regarding inhibitor or inducer status.

Predicting Absorption via BDDCS

From an evolutionarily protective standpoint, enterocytes are equipped with metabolizing
enzymes, which can change a xenobiotic into a generally less toxic and easy to secrete
substance, and efflux transporters, which can help pump xenobiotics back into the gut.
However, successful absorption and subsequent drug bioavailability must overcome these
processes. Uptake transporters are also present in the enterocyte, presumably to facilitate

absorption of nutrients. One such example is PEPT1, which is responsible for bringing
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oligopeptides in, but also helps to absorb compounds such as cefadroxil, a B-lactam
antibiotic(60).

Food, other drugs, and endogenous substrates can affect the environment in which the
drug is dissolved through intrinsic chemical properties (e.g. percent fat, pH, water content) and
by stimulating physiological changes in the gut and stomach. They may also interact
biochemically with transporters and metabolizing enzymes, which can regulate the rate and
extent to which a drug is absorbed. Factors such as pharmacogenomics can likewise alter drug
absorption. Since oral administration is preferred due to compliance, convenience, and stability
reasons, food, other drugs, endogenous substrates, and pharmacogenomics can be major
barriers during drug development. Predicting absorption and how internal and external
variations can change absorption, is therefore very important when selecting drug candidates.

BDDCS predicts that all class 1 and 2 drugs will be well absorbed, but that some class 3
and 4 may also be well absorbed if they are substrates for gut uptake transporters.

BDDCS class 1 and 2 drugs can so readily permeate enterocytes that gut apical uptake
transporters provide only a minor contribution to their absorption. Therefore BDDCS predicts no
effect when uptake is affected for highly permeable compounds since class 1 and 2 drugs can
enter enterocytes unaided by transporters.

Class 3 and 4 drugs are poorly permeable and require active uptake transporters to be
absorbed, and therefore alterations to their activity or expression will result in clinical differences
in absorption and bioavailability. Specifically, decreased uptake transport functionality results in
decreased absorption, and increased uptake function results in increased absorption. Uptake

transport in the gut must therefore be evaluated for BDDCS class 3 and 4 drugs.

Gut Apical Efflux and Transporter-Enzyme Interplay
Apical efflux transporters counteract net xenobiotic absorption from the gut. Apical efflux

transporters include P-gp, MRP2, and BCRP(61). After a drug is absorbed into an enterocyte,
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substrates of apical efflux transporters are pumped back into the gut, reducing the effective
absorption. Not only can efflux transporters affect parent drug absorption, they can also regulate
the extent of metabolism of some drugs.

» BDDCS class 1 drugs are clinically unaffected by changes in transporter expression or
activity in the gut, even if they are substrates. These drugs will be affected only by
changes in metabolism, and the degree of metabolism is unaffected by transporters.

» BDDCS Class 2: Apical efflux transporters can have a clinical impact on the absorption
of class 2 drugs. When efflux is inhibited, an increase in absorption may be observed.
BDDCS class 2 drugs are in a unique position because efflux transporters in the gut can
impact both parent drug absorption and their intestinal metabolism. Wacher et al.(62,63)
discovered that inhibition of P-gp, even in the absence of CYP3A4 inhibition, decreases
intestinal CYP3A4 metabolism, the enzyme that accounts for approximately 70% of CYP
expression in the gut(64,65). One might expect that inhibiting efflux in the gut would
increase metabolism by forcing a drug to interact with metabolizing enzymes for longer.
One might also expect that metabolism would not be affected, but that inhibiting efflux
would increase absorption and therefore bioavailability. However, because CYP3A4 and
P-gp are co-regulated and share so many substrates(66), P-gp substrates are also likely
to be metabolized by CYP3A4. Metabolizing enzymes are located just below the
microvillus border in enterocytes(67). P-gp and CYP3A4 work in concert to eliminate
drug from the body. Efflux transporters recycle xenobiotics that have not yet been
metabolized by CYP3A4, pumping them back into the gut lumen and allowing them to be
absorbed multiple times, giving the drug multiple opportunities for drug exposure, but
also multiple opportunities for metabolism, a process called enzyme-transporter
interplay. Therefore, when an enteric efflux transporter is inhibited, a class 2 drug may
have decreased metabolism and increased bioavailability greater than would be

expected by inhibiting absorption alone. This is specific to enterocytes and inhibition of
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efflux transporters in hepatocytes leads to increased concentrations of parent drug and
increased metabolism.

» BDDCS Classes 3 and 4: Apical efflux transporters play a protective role against poorly
permeable class 3 and 4 drugs by effectively limiting absorption of poorly permeable
drugs that are substrates for an efflux transporter. Class 3 and 4 drugs that are
substrates of apical efflux transporters may see an increase in drug absorption when

these transporters are inhibited.

Gut Basolateral Transporters

Little has been explored regarding basolateral transporters expressed on the
enterocyte(61). It is unlikely that basolateral efflux is extremely important since concentrations in
the portal vein will be very low compared to the cell, encouraging passive diffusion. Apical
uptake transporters may be necessary for more hydrophilic class 3 and 4 drugs to enter the cell,
but leaving the cell requires passage through the hydrophilic portion of the membrane and is

likely not a limiting factor.

Effects on Absorption Rate: Flip-flop Kinetics

When a drug is given as an extended release formulation, absorption rate is often slower
than elimination. Alternatively, the absorption of an immediate release drug is generally a
relatively quick process compared to elimination. For most immediate release drugs, elimination
is the rate-limiting step. However, a very small number of immediate release drugs exhibit flip-
flop kinetics, where the rate of absorption is the rate-limiting step in the disposition of a drug,
instead of elimination. Flip-flop kinetics may be a developmental concern when a compound is
poorly permeable/poorly metabolized and also has a relatively short ty,, specifically if it is
shorter than gastrointestinal transit time. For drugs displaying flip-flop kinetics, the terminal

slope actually reflects absorption processes because absorption rate is not limited for highly
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permeable/highly soluble drugs. We expect that only class 3 and 4 drugs would demonstrate
flip-flop kinetics. Specifically, the absorption rate is probably limited by the affinity to and velocity
of gut uptake transporters. Garrison et al. recently evaluated this hypothesis(68). For 19 drugs
exhibiting flip-flop kinetics, 16 were indeed class 3 or 4. While the absorption of class 2 drugs is
unlikely limited by uptake transporters, their absorption may be slow as a result of poor

dissolution and very slowly dissolving class 2 drugs may display flip-flop kinetics.

Pharmacogenomics Affecting Absorption

Genetic factors can directly impact a person’s ability to absorb a drug. For instance,
patients with inflammatory bowel disease have increased MRP1 expression in the intestine(69),
which can potentially result in decreased absorption of class 2, 3, or 4 drugs. Genetic
differences within healthy populations can also result in variation in absorption. The variant
SLCO2B1*3, which codes for OATP2B1 and has decreased uptake activity, has an allele
frequency of 30.9% in Japanese(70,71). When fexofenadine, a BDDCS class 3 drug, was dosed
to a Japanese population, those with the allele had a 37% lower AUC than those without the
allele, indicating that genetic differences can impact drug absorption. Alternatively, there was no
significant difference observed in AUC when midazolam, a class 1 drug, was dosed(72).
Genetic differences are sometimes highly related to race, highlighting the importance of
selecting an appropriate population of healthy volunteers representing common genotypes for
dosing in certain countries. Genetics, expression, and activity of metabolizing enzymes and
transporters can directly impact absorption and other dispositional functions of a drug and
increased or decreased functionality follow the predictions outlined for each class.

Genetic differences in expression or activity of a metabolizing enzyme or transporter can
significantly impact the metabolism or elimination of drugs. For example, a significant
percentage of people are poor CYP2C19 metabolizers. Therefore, when a CYP2C19 substrate

is prescribed, we would expect increased exposure in these patients. In fact, poor metabolizers
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have greater acid suppression and ulcer healing than extensive metabolizers when they take

proton pump inhibitors such as omeprazole as a result of their increased exposure(73).

Non-transport Mediated Interactions Affecting Drug Absorption

Finally, concomitant food, drug, or supplement administration can potentially alter drug
solubility. For instance, some tyrosine kinase inhibitors (TKIs), which are anticancer agents, or
the malignancy itself, can cause gastric distress such as gastroesophageal reflux disease
(GERD). To combat this unpleasant side effect, many patients take proton-pump inhibitors,
which increase gastric pH. Unfortunately, this can have the effect of decreasing the solubility of
some of these weakly basic TKIls, thereby decreasing drug absorption(74). Yago et al.(75)
showed that absorption, presumably by improving drug solubility, could be improved in healthy
volunteers with elevated gastric pH (hypochloridria) by pre-dosing betaine hydrochloride that
acidified the stomach prior to dosing the TKI dasatinib. Solubility-based drug interactions are
likely to affect poorly soluble BDDCS class 2 and 4 drugs only, since the solubility class is
defined by the lowest solubility condition possible in the stomach and gut.

Food can have a significant impact on drug absorption by influencing drug solubility and

active absorption. These interactions will be explored in detail in a later section.

Role in Predicting Metabolism and Hepatic Elimination

The majority of drug metabolism follows drug absorption. While expressed in smaller
concentrations than in the liver, the gut wall contains relatively high concentrations of
metabolizing enzymes compared to other organs. Gut metabolism is a component responsible
for decreasing a drug’s bioavailability. The fraction of the absorbed dose that escapes gut
metabolism is represented by Fs. Gut metabolizing enzymes are also largely responsible for the

bioactivation of prodrugs.
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CYP3A is only expressed at 1.4% of that in hepatocytes(76,77), but accounts for 70-
80% of CYP expression in the gut (76) and more than 50% of metabolized drugs are substrates
for CYP3A4(78) and may be presystemically metabolized. As a low-affinity, high-capacity
enzyme, it may be particularly susceptible to drug concentration differences(67), influenced by
permeability, transport, or solubility.

BDDCS class 1 and 2 drugs are, by definition, subject to extensive metabolism, while
class 3 and 4 are poorly metabolized. Therefore, inhibition of gut or hepatic metabolism will
significantly increase the bioavailability of class 1 and 2 drugs, but have little effect on class 3
and 4 drugs. Induction of metabolism is expected to decrease bioavailability of class 1 and 2

drugs.

Hepatic Basolateral Uptake

After oral absorption, the liver is the first organ to process drugs and so hepatic transport
is important. Hepatic drug exposure is often regulated by hepatic basolateral uptake. While at
least 7 major transporters (OATP1B1, OATP1B3, OATP2B1, NTCP, OCT1, OCT3, and OAT2)
and the bidirectional transporters ENT1, ENT2, OAT7, OCTN2, and OSTa-OSTp facilitate
hepatic distribution, the FDA considers OATP1B1 and OATP1B3 to be the most clinically
relevant(9) and recommends evaluating hepatically eliminated drugs for their potential to
interact with these transporters as substrates, inhibitors, or inducers.

As in the gut, BDDCS predicts that uptake transport will be clinically irrelevant for class 1
drugs. BDDCS predicts that hepatic basolateral uptake transporters may play a significant role
in class 2 drugs, which differs from predictions for the gut, and are necessary for hepatic
exposure of poorly permeable class 3 and 4 drugs. The gut has “leakier” membranes
(composed of epithelial cells) than the liver, which is composed of endothelial cells. This may

possibly explain the difference in observed uptake transporter effects for class 2 drugs(50).
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Metabolism in hepatocytes is the major eliminating function of class 1 and 2 drugs. Since
class 1 and 2 drugs are extensively metabolized and the massive portion of metabolism occurs
hepatically, it follows that hepatic transporters (for class 2 drugs) and/or metabolizing enzymes
(for class 1 and 2 drugs) will be significant determinants of their disposition.

Class 1: Class 1 drugs do not depend on uptake for their hepatic access and
transporters will have no impact on their disposition. However, hepatic metabolizing enzymes
mediate the majority of elimination of class 1 drugs and their function will affect the disposition
of class 1 drugs. If an hepatic metabolizing enzyme contributing to the clearance of a class 1
compound is inhibited, drug exposure (AUC) is expected to increase, and a lower dosage may
be required to avoid toxicity. Alternatively, if the metabolizing enzyme is induced, clearance may
be greater than expected, resulting in poor exposure and a potential for drug inefficacy.

Class 2: The systemic and metabolic disposition of class 2 drugs can be affected by
both transport and metabolism. For BDDCS class 2 drugs, BDDCS predicts that decreased
function of a hepatic basolateral uptake transporter may result in increased portal vein
concentrations and decreased hepatocyte concentrations. Subsequently, when uptake is
inhibited, decreased metabolism may be observed, while induction may lead to increased
metabolism. Obviously when metabolism is inhibited, there may be increased plasma or hepatic
concentrations of parent drug and decreased elimination, while metabolic induction will result in
decreased plasma or hepatic concentrations of parent drug and increased metabolite
concentrations.

Classes 3 and 4: Class 3 and 4 drugs are primarily eliminated by either renal or biliary
elimination of unchanged drug. We expect that the poorly permeable class 3 and 4 drugs
require a transporter to enter hepatocytes, while biliarily eliminated drugs require active
canalicular efflux into the highly concentrated bile. Thus, especially if a compound is biliarily

eliminated, inhibition of uptake transporters in the liver may result in increased AUC and
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increased half-life as a result of decreased clearance. A lower dose may be required for biliarily
eliminated compounds whose hepatic uptake has been inhibited.

For instance, rosuvastatin and pravastatin are primarily eliminated as unchanged drug in
the bile. They are clinically relevant substrates of OATP1B1 and polymorphisms in the gene
encoding OATP1B1, SLCO1B1, or drugs inhibiting 1B1 have been shown to increase plasma
concentrations and decrease hepatic concentrations of these drugs(79,80). Not only may this
decrease the efficacy of these statins(81), whose mechanism of action is in the liver, it also

increases the risk of rhabdomyolysis, a severe muscle toxicity(82).

Hepatic Apical Efflux

Apical efflux transporters regulate parent drug and metabolite entry into the bile. Apical
efflux transporters in the liver can contribute to the disposition of some class 2, 3, and 4 drugs.
Drugs that are eliminated as parent drug in the bile must be actively transported into the bile by
canclicular efflux transporters and follow bile flow through the biliary tree until the biliary
contents are dumped back into the duodenum. Some drugs may be reabsorbed through the gut.
Drugs that are not reabsorbed in the gut will be eliminated as part of the feces. Apical efflux can
regulate biliary efflux as well as hepatic retention.

Class 1: Apical efflux will have no effect on the disposition of class 1 drugs.

Class 2: When apical efflux is inhibited, concentrations in hepatocytes are increased.
For class 2 drugs, this may result in increased metabolism. You may notice that apical efflux
inhibition in the gut results in the opposite effect: decreased metabolism. We hypothesize that
this is because the drug is exposed to the apical transporter after metabolizing enzymes in the
hepatocyte, while the drug interacts with efflux transporters prior to metabolizing enzymes in the
gut.

Class 3 and 4: It has been hypothesized that canalicular efflux does not contribute to

the systemic clearance of poorly metabolized drugs(83). If this is true, there will not be
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increased systemic exposure of class 3 and 4 drugs. In this case, decreasing the dose may not
be necessary to reduce toxic systemic exposure. However, accumulation within hepatocytes
sometimes mediates hepatotoxicity, and a decreased dose may be required for this mechanism.
There is a scarcity of data regarding the effect of apical efflux inhibition on systemic

concentrations, however.

Predicting Bioavailability

Bioavailability depends upon the extent of absorption, the extent of metabolism in the gut
and the liver, and drug loss due to first pass biliary elimination. In addition to understanding the
metabolic component of bioavailability, all of these processes can potentially be affected by
drug transport for class 2-4 drugs.

Because bioavailability depends on sequential processes, high absorption does not
necessarily predict high bioavailability, since many highly absorbed drugs are also extensively
metabolized. As such, BDDCS predicts that highly permeable class 1 and 2 drugs will have
good absorption, but not necessarily good bioavailability. BDDCS assumes that metabolized
compounds were absorbed compounds. However, there may be some compounds that are
metabolized by non-enzymatic routes or by bacteria in the gut lumen. When over 900 drugs
were classified into BDDCS, however, extensively metabolized drugs were categorized
regardless of the mechanism(54). However, this is a nascent field and few drugs are currently
known to be metabolized in this manner.

Class 1: The bioavailability of class 1 compounds can be affected by metabolizing
enzymes and inhibition of metabolism will increase the bioavailability.

Class 2: Class 2 compounds can be affected by both transporters and metabolizing
enzymes. Inhibition of efflux transporters in the gut can lead to increased absorption, decreased
metabolism, and increased bioavailability. Inhibition of hepatic basolateral uptake may lead to

decreased metabolism and increased bioavailability, while inhibition of hepatic basolateral efflux
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may lead to increased hepatic metabolism and decreased bioavailability. Inhibition of
metabolizing enzymes may increase bioavailability.

Classes 3 and 4: Metabolism is not a significant factor in the bioavailability of class 3
and 4 drugs. However, uptake and efflux transporters can potentially regulate bioavailability in
both enterocytes and hepatocytes. One would expect decreased bioavailability if an enteric
uptake transporter responsible for a drug’s uptake was inhibited due to decreased absorption.
Conversely, inhibition of enteric apical efflux would result in increased absorption and
bioavailability. Additionally, first-pass biliary excretion may play a role. Hepatic uptake is
generally considered the rate-limiting step of biliary elimination. Therefore, inhibited hepatic
uptake of class 3 and 4 drugs would likely see a decrease in biliary elimination and an increase
in bioavailability. It has been suggested that hepatic canalicular efflux does not regulate
systemic clearance(83), and therefore inhibition of hepatic canalicular efflux would not likely
have an effect on bioavailability, however, given the lack of clinical studies on biliary elimination,
there is little data to confirm or deny this hypothesis.

Below we tabulate pharmacokinetic changes that may be expected when the function of
an enterocytic drug transporter is decreased for any number of reasons including chemical

inhibition from other drugs, food, or endogenous substrates and genetic mutations.

Table 1.1. Effects of Gut Apical Transporters on Pharmacokinetic Parameters

BDDCS Decreased Functionality of Apical Decreased Functionality of Apical
Class Uptake Efflux

F Ka tmax Cmax  AUC F Ka tmax Cmax AUC

1 & & & & & & & & & &

2 & & & & & A A v A A

3 v A v ' A,

4 v v A v v A A v A A
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Predicting Food Effects

Eating a meal can have a substantial impact on pharmacokinetics. In fact, many drug
labels advise that the drug be taken either with a meal or separate from a meal. The act of
eating causes a cascade of physiological changes in the gastrointestinal system. These can
greatly affect the solubility and the transit time of the drug. In turn, the transit time can affect the
exposure to intestinal fluids and membranes, as well as the location of drug-membrane
exposure, where different segments of the intestine have different properties including
membrane tightness, transporter and metabolizing enzyme expression. Additionally, food,
drinks, and supplements can have a biochemical impact on the drug, where components of
each can serve as inhibitors of transport or metabolism. Obviously, the effect of food on
pharmacokinetics is a multi-faceted problem, which makes predicting food effects a priori quite
difficult. However, some general predictions have been proposed using BDDCS principles.

Food chemistry is extremely complex. Even a single food can have multiple molecular
components that inhibit uptake, efflux, metabolism, or any combination, forcing a complex
interaction. For example, grapefruit juice, famous for its ability to inhibit CYP3A4, includes
flavonoids and furanocoumarins. While flavonoids were initially expected to be the perpetrators
of this interaction, it was ascertained that certain furanocoumarins are the culprits(84). When
taken with antihistamines such as terfenadine or astemizole, grapefruit juice increased drug
exposure to dangerous concentrations that caused cardiotoxicity, and, in some cases, death.
Both drugs were eventually removed from the market. Many drugs metabolized by CYP3A4 are
now labeled with cautions against consuming grapefruit juice. Additionally, components in
grapefruit juice have been shown to inhibit uptake transporters(85) and P-gp(86).

Meanwhile, human gastrointestinal physiology is incredibly variable, as are the contents
of the gastroinstestinal tract. Baseline gastric efflux on a fasted or fed stomach and pH can vary
significantly between humans. The microbiome, which can break down drugs, having a direct

effect, or influence food digestion, causing an indirect effect, is signature to each person.
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Despite this complexity and variability, BDDCS is able to predict the effects of food for
approximately 70% of drugs(87).

After eating, some physiological changes occur that can result in dispositional changes
to drugs. The predicted dispositional changes as a result of physiological response to food, and

more specifically high fat meals, are tabulated below.
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Biochemical Inhibition

Components in high fat meals® may inhibit intestinal transport. Lipids consumed,
monoglycerides and fatty acids liberated during fat digestion, and bile salts released to aid in
digestion have all been shown to inhibit transport, especially that of P-gp(90,97-99,101), but
also of uptake(90).

Components in any food, whether or not it is part of a high-fat meal, have the potential to
serve as biochemical inhibitors of transport or metabolism and, if consumed daily, inducers.
Certain fruit juices, teas, beer, and wine can cause biochemical inhibition of transporters and/or
metabolites. For instance, orange, grapefruit, and apple juice have been shown to inhibit
OATPs and P-gp in the gut(85,86,102).

The specific inhibitors in food can be quite difficult to identify since foods contain small

concentrations of many compounds and compounds may have an additive effect.

Chemical Solubility Effect

Drug solubility depends on the pH of fluid, temperature, volume, and contents of fluid.
The lipophilicity of a drug is also correlated with water solubility. The rate and extent of
absorption can be altered by food.

Factors that increase the amount of drug solubilized are particularly important for
BDDCS class 2 and 4 drugs, whose absorption is limited by their poor solubility. Foods can
increase solubility by increasing the volume into which a drug can be solubilized, changing the
pH of the fluid, and increasing concentrations of bile salts 4-5(91,92) fold. After a meal, the
volume of intestinal fluids increases 2-3 fold, which can potentially increase the amount of drug
that is solubilized, meaning more drug may be available for absorption. Bile salts can improve

the solubility of some drugs by acting as surfactants(103). Changes in the pH of gastrointestinal

> A high fat meal contains 800-1000 calories with 50-65% from fat and 25-30% from carbohydrates and 15-20% protein(100)
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fluids can alter the solubility of drugs. Acidic drugs will be more poorly soluble in acidic media,

while basic drugs will lose solubility in basic media and vice versa.

Overall Predicted Food Effects After Consuming High Fat Meals for Each BDDCS Class:

Class 1: The overall bioavailability is unlikely to change for BDDCS class 1 drugs since
increasing solubility will have no effect and class 1 drugs are not subject to transporter
inhibition. Since gastric emptying will be delayed after eating, however, these drugs may be
more slowly absorbed, and tpeax may be later.

Class 2: When class 2 drugs are administered with a high fat meal, the bioavailability
will likely increase while time to reach peak concentrations may shift in either direction.

High-fat meals may inhibit P-gp, resulting in increased bioavailability. As we discussed
earlier, P-gp inhibition can also limit metabolism of BDDCS class 2 drugs. Therefore, by
decreasing both efflux and metabolism, BDDCS class 2 drugs are likely to be more bioavailable
when P-gp is inhibited. Additionally, fatty food and the release of bile acids can form micelles,
promoting drug solubilization.

The time to reach a maximum concentration for a class 2 drug can be affected by a
multitude of factors and no single trend is predicted. By delaying gastric emptying, a high fat
meal can increase the amount of time it takes for the drug to be absorbed in the intestine,
increasing tpeak- The time to reach a maximum concentration may also decrease due to the
inhibition of efflux cycling by high fat meals. Additionally, these processes may compete,
causing no effective change in tyeax.

Class 3: High fat meals, bile salts, and chemical components in food can inhibit uptake
transporters, which class 3 drugs rely on to be absorbed. Patients taking a poorly permeable
class 3 drug might experience decreased bioavailability and poor exposure when administered
with a high-fat meal. Because their uptake is inhibited, the time to reach C,,.x may also increase.

Toeak May also increase as a result of delayed gastric emptying after a high-fat meal.
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Class 4: BDDCS class 4 drugs are very difficult to predict because many interacting
effects including increased solubility, increased gastric emptying time, and inhibited uptake

compete. With so few class 4 drugs, it is difficult to predict a single trend.

Role in Predicting Distribution

Wu and Benet(48) observed that the volume of distribution was somewhat higher in the
highly permeable class 1 and 2 drugs compared to those in classes 3 and 4.

Transporters can drastically affect the volume of distribution by concentrating drug in
tissues. When certain major transporters in the liver or kidney are inhibited, Grover and
Benet(104) noticed certain trends in distribution.

The liver has a primary effect on the volume of distribution. In peripheral tissues, altered
transporter function may have a pharmacodynamic effect and the compound may be attenuated
in tissues, but the calculated volume of distribution does not appear to change.

When hepatic uptake is inhibited, there is an increase in plasma concentration coupled
with a decrease in hepatic distribution, leading to a decrease in volume of distribution. When
hepatic canalicular efflux is inhibited, there is also a decrease in the volume of distribution (or it
is not predictable). Inhibition of hepatic basolateral efflux results in an increase in the volume of
distribution.

However, when renal uptake is inhibited, there is generally no effect on the volume of
distribution. When renal efflux is inhibited, the volume of distribution often increases. They
hypothesize that the discrepancy between changes in volume of distribution due to inhibition of
uptake in the liver versus the kidney is likely a result of the larger mass of the liver, coupled with
increased capacity for transporter expression and drug sequestration(104).

Finally, gut transporters will not have an effect on the volume of distribution because

volume of distribution is a systemic parameter.
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Since class 1 drugs have no clinically relevant transporter effects, we expect no changes
in the volume of distribution of class 1 drugs when a transporter has increased or decreased
function or expression. Alternatively, since uptake and efflux transporters can affect class 2, 3,

and 4 drugs in the liver, we would expect changes to the volume of distribution described above.

Distribution into the Brain

Distribution to various tissues can be predicted by BDDCS. Specifically, we now
understand the conditions necessary for central nervous system penetration. This is a
particularly difficult problem during drug development of CNS-targeted drugs, as the brain is
well-protected from xenobiotics with tight junctions and high efflux transporter expression.
Understanding and predicting brain penetration is also important to avoid central side effects for
a peripherally acting drug. P-gp, BCRP, and various MRPs are expressed on the apical
membrane of brain capillary endothelial cells, poised to extrude drugs that gain entry across its
membrane. In development, substrate specificity for efflux transporters is a cue that the drug will
be unable to successfully penetrate the brain. When the brain is the intended site of action,
lipophilic compounds with a low polar surface area are expected to be available to the
CNS(105,106).

The brain is also a particularly concerning tissue for drug resistance. Some diseases,
including some cancers and epilepsy, are resistant to drug penetration in the brain as a result of
overexpressed P-gp or other efflux transporters. This overexpression is sometimes innate to the
disease and sometimes acquired, potentially due to drug treatment. To overcome drug
resistance, some scientists have proposed co-dosing with efflux inhibitors. Instead, dosing class
1 drugs may be a more thorough and facile approach.

Mahar Doan et al.(105) suggested that highly permeable, non-P-gp substrates were
likely to cross the blood-brain barrier, while poorly permeable and P-gp substrates are less likely

to cross the blood-brain barrier. While this holds true for a majority of compounds, an analysis
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by Wager et al. revealed that 20% of CNS drugs were both poorly permeable and P-gp
substrates(107). Broccatelli et al.(108) incorporated BDDCS classifications, correctly predicting
the CNS distribution of greater than 90% of their dataset. Ninety-eight percent of class 1 drugs
in their dataset were able to cross the CNS, whether or not they were a substrate for P-gp. In
fact, after correcting for a misclassified drug, all of the BDDCS class 1 P-gp substrates were
able to distribute into the CNS(59,108). Even when P-gp was able to partially efflux the drug,
there was significant brain penetration. Contrarily, 75% of P-gp substrates in classes 2, 3, and 4
were unable to traverse the blood brain barrier. While presumably all of the class 1 drugs have
CNS exposure, even if they are P-gp substrates, clearly 25% of P-gp susbtrates in other classes
were still able to access the brain, likely because they are good substrates for uptake
transporters at the brain. While Broccatelli et al. only considered P-gp substrate specificity, other
efflux transporters such as BCRP are expressed at the blood-brain barrier and are responsible
for extruding drugs. The same principles should apply to substrates of other efflux transporters.
Based on these findings, each class is predicted to behave as follows:

Class 1: Transporter effects are minimal and drugs are expected to penetrate the CNS

Class 2: Efflux transporters at the blood-brain barrier may affect class 2 drugs

Class 3: Uptake transporters at the blood-brain barrier (OATP1A2, OATP2B1) are
required for brain penetration; while efflux transporters can extrude drugs from the brain

Class 4: Uptake transporters at the blood-brain barrier are required for brain
penetration; while efflux transporters can extrude drugs from the brain

Therefore, when developing a drug with a CNS indication, a class 1 drug may be
preferable for candidate selection, since it will penetrate, regardless of transporter affinity. Class
2 drugs may be developable as long as they are not substrates for efflux transporters. Class 3
and 4 drugs have more stringent requirements. For a class 3 or 4 drug to be effective as a CNS

agent, it must be a substrate for an uptake transporter in the gut (if it is orally administered) and
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at the blood-brain barrier, and should not be a substrate for efflux transporters at the blood-brain

barrier.

Alternatively, when developing peripherally acting drugs, class 1 drugs may have

potential CNS side effects, even if they are substrates for efflux transporters. Class 2 drugs may

have central effects if they are not substrates of efflux transporters. To avoid central effects for

class 3 and 4 drugs, it is best to avoid substrates of uptake transporters at the blood-brain

barrier. Non-class 1 drugs will need to be evaluated as substrates of CNS-expressed

transporters to predict brain penetration.

Table 1-3. Effect of Apical Transporters on Central Nervous System Distribution

BDDCS Class Apical uptake Apical efflux CNS exposure

Class 1 No effect No effect Yes

Class 2 May be necessary for May decrease CNS If a non-substrate
some class 2 drugs to exposure for efflux and may
penetrate the brain Inhibition may lead to possibly require
Inhibition may lead to increased CNS exposure  an uptake
decreased CNS transporter
exposure

Class 3 Required for CNS Will prevent exposure to If a substrate for
exposure the CNS an uptake
Inhibition will lead to Inhibition may lead to transporter and a
decreased CNS increased CNS exposure  non-substrate for
exposure an efflux

transporter
Class 4 Required for CNS Will prevent exposure to If a substrate for

exposure
Inhibition will lead to
decreased CNS
exposure

the CNS
Inhibition may lead to
increased CNS exposure

an uptake
transporter and a
non-substrate for
an efflux
transporter
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Potential Extensions to Other Membranes

While distribution and transporters regulating distribution outside of the gut, liver, and
brain have not been analyzed with respect to BDDCS dispositional predictions, we expect that
most internal tissues (composed of tightly regulated endothelial cells) will behave in a similar
manner to the liver and brain and not like the epithelial-based gut. Therefore, we expect that
class 1 drugs will distribute to a tissue regardless of transporter function, while class 2 drugs
may be affected by the function of uptake transporters regulating drug entry and may have less
tissue penetration if they are a substrate of a relevant efflux transporter. Class 3 and 4 drugs will
almost certainly require active transport into the tissue and their distribution will be significantly
impacted by efflux transporters expressed in the tissue. For class 1 drugs, there may be some
concern about undesired distribution to off-target organs. Scientists can potentially use this
information to aid in drug delivery to target tissues, including the heart and skeletal muscles.
Distribution across the placenta could also potentially be predicted, which may be advantageous

because its distribution cannot be studied for ethical reasons.

Distribution to the Kidney

As we discussed earlier, renal elimination is a combination of passive filtration
processes, reabsorption, and active secretion. Reabsorption is primarily passive. The vast
majority of water and solutes are reabsorbed along the tubule, resulting in only 1 mL of urine
production every minute. There are some transporters responsible for active reabsorption
expressed primarily in the proximal tubule, however. While a number of secretory transporters
are expressed along the proximal tubule, OAT1, OAT3, and OCT2 are currently considered the
most clinically significant and the FDA recommends studying renally eliminated drugs for
interactions with these transporters(9). All drugs should be evaluated as substrates of P-gp, as
well. However, the ITC lists a number of renal transporters that they consider important to

evaluate during drug development, including the bidirectional transporters ENT2, expressed on
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the basolateral membrane, and ENT1, OCTN1, and OAT4, expressed on the apical membrane.
Secretory transporters including OAT2 and OATP4C1, which are expressed on the basolateral
membrane and MATE1, MATE2-K, MATE2, MRP2 and MRP4 all of which are expressed on the
apical membrane are considered relevant by the ITC. They also include the absorptive
transporter URAT1, which is expressed on the apical membrane(10).

Class 1 and 2 drugs are likely to be reabsorbed from the tubule, as we have discussed.
We expect that class 2 drugs may interact with basolateral uptake and apical efflux transporters,
similar to hepatic predictions. We expect that uptake and efflux transport will be required to
contribute to net secretion of class 3 and 4 compounds. However, renal elimination can also be
completely passive, and class 3 and 4 compounds are not necessarily substrates of renal

transporters even if they are eliminated as unchanged drug in the urine.

Renal Impairment

Chronic kidney disease (CKD) is a serious condition, affecting more than 10% of adults
in the United States(109). Since the kidney eliminates many drugs and metabolites, impaired
renal function can also seriously decrease renal clearance of these drugs, mandating dose
adjustments in patients. One may understandably, but mistakenly, conclude that renal
dysfunction should only affect renally eliminated drugs. In fact, metabolism can be dangerously
altered in CKD patients, particularly as disease progresses. When the kidneys begin to lose
their function, endogenous compounds that are eliminated by the kidneys in healthy people
accumulate in toxic concentrations. These compounds are called uremic toxins. Initially, it was
hypothesized that uremic toxins inhibited metabolizing enzymes. Investigations showed that
uremic toxins inhibited some, but not all, CYP metabolizing enzymes(110-115). As it became
clear that drug transporters also played a role in controlling drug access to metabolizing
enzymes, Reyes and Benet questioned if perhaps uremic toxins could also inhibit transporters,

potentially reducing metabolic clearance in vivo. They concluded that uremic toxins could inhibit
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uptake transporters in hepatocytes. Since the disposition of a class 1 drug is unlikely to be
affected by drug transporters, they tested whether uremic toxins inhibited hepatic exposure of
propranolol, a class 1 drug. While uremic toxins did not inhibit the uptake of propranolol, some
uremic toxins did inhibit the uptake of losartan, a class 2 drug and eprosartan, a class 4 drug.

Interestingly, in this study, uremic toxins were unable to inhibit phase | metabolism when
human uremic serum was incubated with microsomes dosed with propranolol or losartan, both
of which are extensively metabolized(116).

Given previous evidence, it would be unwise to suggest that metabolizing enzymes are
uninhibited by uremic toxins. Therefore, decreased metabolism may be observed for class 1
and 2 drugs taken by patients with CKD. Alternatively, uptake transporters are likely inhibited by
uremic toxins, which may decrease the metabolism of class 2 drugs and decrease hepatic
clearance of class 3 and 4 drugs. All drugs should be tested for increased parent drug
exposure, though the mechanism of inhibition will differ between classes.

This is a critical prediction that may a) increase the safety of drugs in ESRD patients,
many of whom require several drugs and b) ease the developmental burden. The FDA now
recommends that most new molecular entities be evaluated in ESRD patients, excepting drugs
predominantly cleared by the lungs, monoclonal antibodies, and drugs intended for single-dose
administration(117). Unfortunately, generating these studies and recruiting patients is difficult,
costly, and variable. Applying BDDCS concepts to pharmacokinetic studies in renal disease
may help prioritize what studies are necessary and help understand if physicians should be
concerned about inhibition of transporters, metabolizing enzymes, or both in administering one

or multiple drugs.

CONCLUSIONS: THESIS AIMS
The goal of this thesis is to address some of the current challenges in pharmacokinetics.

We specifically aim to more fully understand mediators of dispositional processes, in particular
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the role of transporters, metabolizing enzymes, and their integrative mechanisms. We largely
focus on the role of transporters and metabolizing enzymes in the context of drug elimination,
but also discuss their roles in absorption and distribution.

In chapter 2, we address current challenges in understanding biliary elimination. Since
measuring biliary elimination is difficult, sometimes unreliable, and the extent of biliary
elimination is often unknown, we develop a model that predicts which drugs are likely to exhibit
biliary elimination of parent drug. We additionally discuss our current understanding of how drug
transport mediates biliary or renal elimination of parent drug.

In chapter 3, we consider how permeability rate may serve as a mechanism that
determines which drugs are extensively metabolized and which drugs are poorly metabolized
and eliminated in the bile or the urine as unchanged drug. Although we show that it is
particularly difficult to understand when a drug is eliminated as unchanged drug in the bile
versus metabolized in chapter 2, the study carried out in chapter 3 demonstrates that
permeability rate can effectively discriminate between these two elimination routes.

Throughout this thesis, we refer to the predictive utilities of BDDCS. While this system
can be powerfully applied to predict transporter and metabolizing enzyme interactions and
dispositional effects in absorption, distribution, and elimination, it currently relies on in vitro and
partially on clinical data. Its predictive utility during development would be greatly enhanced by
successful in silico models predicting BDDCS class. In chapter 4, we develop an in silico model
to predict BDDCS class, compare its predictive ability to a successful in vitro model, and discuss
the in silico model’'s strengths and limitations.

BDDCS makes predictions regarding every aspect of disposition: absorption,
distribution, metabolism, and excretion. BDDCS provides many valuable predictions that can be
useful in guiding drug development decisions. It currently relies on the extent of metabolism,
which cannot be assessed until phase | studies, and solubility studies. It would be extremely

useful to have accurate high-throughput methods to predict BDDCS class prior to phase | trial.
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In this project, we aimed to develop new methods of predicting aspects of drug disposition. In
chapters 2 and 3, we utilize observations from BDDCS to integrate in vitro information with in
silico models that we developed to predict the major routes of drug elimination. In chapters 4
and 5, we extend the utilities of BDDCS by developing and analyzing an in silico model that

predicts BDDCS class and discuss its growing list of applications.
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CHAPTER 2. PREDICTING WHEN BILIARY EXCRETION OF PARENT DRUG IS A MAJOR ROUTE

OF ELIMINATION IN HumANs'

ABSTRACT

Biliary excretion is an important route of elimination for many drugs, yet measuring the
extent of biliary elimination is difficult, invasive, and variable. Biliary elimination has been
quantified for few drugs with a limited number of subjects, who are often diseased patients. An
accurate prediction of which drugs or new molecular entities are significantly eliminated in the
bile may predict potential drug-drug interactions, pharmacokinetics, and toxicities. The
Biopharmaceutics Drug Disposition Classification System (BDDCS) characterizes significant
routes of drug elimination, identifies potential transporter effects, and is useful in understanding
drug-drug interactions. Class 1 and 2 drugs are primarily eliminated in humans via metabolism
and will not exhibit significant biliary excretion of parent compound. In contrast, class 3 and 4
drugs are primarily excreted unchanged in the urine or bile. Here, we characterize the significant
elimination route of 105 orally administered class 3 and 4 drugs. We introduce and validate a
novel model, predicting significant biliary elimination using a simple classification scheme. The
model is accurate for 83% of 30 drugs collected after model development, with 100% of biliarily
eliminated drugs correctly predicted and 79.2% of renally eliminated drugs correctly predicted.
The model, which incorporates calculated polarizability and metabolic stability, corroborates the
observation that biliarily eliminated drugs have high molecular weights, while demonstrating the
necessity of considering route of administration and extent of metabolism when predicting biliary
excretion. Interestingly, a predictor of potential metabolism significantly improves predictions of

major elimination routes of poorly metabolized drugs. This model successfully predicts the major

T Modified from Hosey CM, Broccatelli F, Benet LZ. Predicting when biliary excretion of parent drug is a major route of elimination in
humans..AAPS J. 2014;16:1085-96.
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elimination route for poorly permeable/poorly metabolized drugs and may be applied prior to

human dosing.

INTRODUCTION

Drugs are primarily eliminated via metabolism, biliary excretion of unchanged drug, or
renal elimination of unchanged drug in the urine. During development, predicting how a drug will
be eliminated from the body can help to assess potential toxicities, drug-drug interactions
(DDls), and pharmacokinetics, including possible exposure to the target site. Extent of
metabolism and urinary excretion are readily quantifiable. However, biliary excretion is difficult
to quantify in humans, and is often predicted in preclinical animal models, which perform poorly,
especially when hepatic uptake transporters mediate biliary clearance(118). It would therefore
be ideal to model when biliary excretion will be a primary elimination route in humans prior to
human dosing.

Transporter-mediated drug interactions can alter the exposure of drugs, resulting in
toxicity or lack of efficacy. For example, cyclosporine inhibits the uptake of rosuvastatin, a
biliarily eliminated drug, by OATP1B1, resulting in a sevenfold increase in AUC(119), which may
result in life-threatening rhabdomyolysis. It is now considered essential to determine possible
transporter-mediated drug interactions and develop respective guidances during drug
development(120). The Biopharmaceutics Drug Disposition Classification System (BDDCS)
predicts when drug-drug interactions may be a concern utilizing extent of metabolism, which is
qualitatively correlated with passive intestinal permeability rate, and solubility(48).

Biliary elimination is a vectorial process mediated by transport on the basolateral and
apical membranes of hepatocytes, which may both cause interactions and affect disposition. To
access the liver, drugs in the portal vein must traverse the hepatic basolateral membrane,
requiring active transport for biliarily eliminated drugs, which are poorly permeable. Notably,

Varma et al.(38) observed a large overlap in the physicochemical space between human OATP
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substrates and drugs where biliary excretion accounts for 2 10% of the administered dose in
rats. Human OATP substrates and biliarily excreted compounds both tended toward MW = 400
Da, cLogD7.4 < 2.0, and RPSA (polar surface area normalized by molecular mass) = 20%.
Subsequent to hepatic uptake, biliarily eliminated drugs are actively effluxed across the
canalicular membrane to the highly concentrated bile by transporters such as P-gp, BCRP,
MRP2, MDR3, BSEP, or MATE1. Drugs that are not eliminated in the bile can reenter the
systemic circulation by permeation back across the basolateral membrane or be metabolized.
As the most promiscuous efflux transporter, biliarily eliminated drugs are frequently P-gp
substrates and therefore might be expected to exhibit physicochemical properties that overlap
with those of P-gp substrates. Recently, Broccatelli determined that P-gp nonsubstrates have a
calculated surface area (S) < 400 A? (121). Transport efficiency can be inhibited by xenobiotics,
endogenous substrates, disease states, or genetic polymorphisms, resulting in decreased
hepatic clearance of drugs and endogenous compounds such as bilirubin and bile salts and
may result in unpredictable, possibly toxic exposure.

The major route of elimination can dictate a drug’s observed pharmacokinetics and
therefore may be targeted or avoided. For instance, drugs that are excreted into the bile may be
subject to enterohepatic circulation, resulting in variable plasma concentrations with multiple
peaks(122), and a longer half-life. Drugs eliminated in the bile may not be appropriate or may
require extra pharmacokinetic monitoring for patients with certain diseases or genetic
polymorphisms, such as those with Dubin-Johnson syndrome, where a mutation in MRP2
results in poor biliary elimination of bilirubin glucuronides and drug substrates. On the other
hand, biliary elimination, because of enterohepatic circulation, could be usefully targeted to treat
diseases in the enterohepatic system, such as Crohn’s disease or liver cancers. Alternatively,
renal elimination should be targeted for drugs that need to reach the systemic circulation or to
treat conditions where the kidney is the target organ such as urinary tract infections. Overall,

understanding the major routes of elimination can help predict drug-drug interactions, toxicities
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and pharmacokinetics during development, and may be useful in predicting substrates of efflux
transporters in other tissues.

While human liver microsomes generally provide reliable predictions of human metabolic
clearance for extensively metabolized drugs(123-128) and renal clearance is not difficult to
determine, predictions of human biliary clearance are difficult and scarce, despite ongoing
efforts(129). Clinical methods include bile duct cannulation during surgery, collection of
duodenal fluid in healthy volunteers, biliary string or fecal collections. These procedures are
difficult, uncommon, and variable. Additionally, much of the data are collected from patients who
do not necessarily have a healthy hepatobiliary system and are under anesthesia, which may
result in physiological changes. In vitro predictions can be carried out in sandwich-cultured rat or
human hepatocytes, which preserve cell polarity and bile canaliculi(130,131). However, uptake
transporter expression is not well preserved in sandwich-cultured rat hepatocytes(132) and
biliary clearance can be rate limited by uptake(133). Several studies have demonstrated that in
vitro measures correlate with, but underpredict, in vivo biliary clearance(134-136). Bile duct
cannulation in rats is often performed, but may not scale to humans, especially since rats have
greater rates of bile flow(45) and canalicular efflux transport(46), as well as increased
expression(47,137) of canalicular efflux transporters.

Historically, a molecular weight cut-off of 500-600 Da was proposed for minimizing
biliary clearance in humans(138). More recently, Yang et al. published a model including 97
drugs, which as a part predicted that anionic drugs with molecular weights greater than 475 Da
are likely to be significantly (> 10% of parent dose) excreted in the bile(37).

While in our study we initially consider only poorly metabolized drugs and drugs that can
be administered orally, their dataset also included extensively metabolized drugs, as well as
drugs that cannot be orally administered. Their study and others implicated hydrogen bond

interactions(37,38), charge state(37-39), the presence of polar groups or a large polar surface
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area(37-41), and the presence of dipole or quadrupole moments(37,39), while others have
implicated hydrophilicity(38,39,41), carboxylic acid groups(39,40), and rotatable bonds(38,40).

Since our objective was to predict when biliary excretion is a major route of elimination
(> 35% of parent dose), we initially did not consider extensively metabolized drugs, as their
disposition is unlikely to be greatly affected by changes in biliary excretion. Wu and Benet(48)
proposed the Biopharmaceutical Drug Disposition Classification System (BDDCS), which
segregates extensively metabolized (class 1 and 2) drugs in humans from those that are
eliminated primarily via renal or biliary routes (class 3 or 4). They noted that very few drugs
have an extent of metabolism between 30% and 70%, and that high permeability rate drugs
were extensively metabolized in humans, while low permeability rate drugs were primarily
eliminated unchanged. The classification system makes predictions about transporter effects
and disposition for drugs in each class, based on extent of metabolism and solubility. In
particular, highly soluble and extensively metabolized class 1 drugs will not exhibit clinically
relevant alterations in disposition due to transporters. Transporters may affect class 2 drugs, but
their disposition changes would primarily reflect changes in metabolite formation and parent
drugs are unlikely to be greatly affected by biliary excretion. Drugs that are significantly
eliminated in the bile or urine fall within classes 3 and 4, and may exhibit altered disposition due
to drug-drug interactions affecting transporters in the gut and/or liver. Benet et al. have compiled
a dataset of over 900 drugs and provided the BDDCS class for each of these drugs(54).

Here, we combine BDDCS’s observations about major routes of elimination with easily
obtained urinary excretion data (see “Methods”) to characterize drugs significantly eliminated in
the bile (> 35% of available parent drug). As class 1 and 2 compounds exhibit less than 30%
elimination into the bile and urine, biliary or renal excretion may only need to be evaluated for
extensively metabolized drugs with a narrow therapeutic range. Indeed, Varma et al.(139)
recently reported that drugs in their data set with MDCK permeability rates greater than 5x10®

cm/s contribute less than 30% of parent drug to human renal elimination and are unlikely to be
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affected by renal DDls, while rat biliary elimination and permeability rate were inversely related.
Finally, low permeability rate compounds were highly represented as substrates of hepatic
basolateral uptake transporters(139). Importantly, their data indicate that in vitro permeability
rate can be used as a surrogate for extent of metabolism for new molecular entities (NMEs)
when clinical data is unavailable, as has been proposed by our laboratory(54,87,140).
Specifically, compounds with permeability rates equal to or exceeding a standard, e.g.,
labetalol, are likely extensively metabolized in vivo in humans, while those with permeability
rates lower than the standard are likely eliminated primarily as unchanged drug in either the bile
or the urine.

Lipinski et al.(11) published guidelines for predicting which drugs are likely to be
absorbed upon oral dosing. However, these rules do not apply when transporters mediate the
intestinal uptake of drugs, i.e., class 3 and 4 drugs that are eliminated in the bile or the urine.

Here, we initially evaluate the molecular properties associated with significant biliary
elimination of orally administered drugs. We then evaluate the importance of considering routes
of administration (oral versus non-oral) and elimination when developing predictive models and
discuss the interesting relationship between absorbed drugs that are eliminated in the bile and
non-orally administered drugs, presumed as poorly absorbed, eliminated in either the bile or
urine. We discuss a surprising and novel observation that poorly metabolized drugs can be
classified by qualitative in silico predictions of CYP3A4 metabolism, and discuss the overlap in
molecular properties of hepatically cleared compounds. The classification model outlined here
can be applied to predict the major route of elimination of poorly metabolized drugs and
provides guidelines to determine if a drug predicted to be poorly absorbed should be evaluated

for active intestinal uptake.
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METHODS

Dataset

BDDCS classification of 927 drugs was assigned by Benet et al. as previously
described(54). Briefly, compounds were classified as highly soluble if the highest dose strength
was soluble in 250 mL of water over the pH range of 1-7.5 at 37 °© C. Compounds with greater
than 70% metabolism in humans were classified as highly metabolized. From this dataset, we
selected orally administered BDDCS class 3 and 4 drugs. Two clear outliers, tenofovir
disoproxil, a prodrug, and vancomycin, which is rarely administered orally, were removed.
Finally, drugs that fell into the primary excretion route criteria outlined below were selected for
analysis, leaving a dataset of 105 drugs. An external dataset of 6 biliarily eliminated and 24
renally eliminated drugs was developed by considering clinical data of orally administered
BDDCS class 3 and 4 or poorly metabolized drugs that did not meet the initial criteria based on
fraction excreted unchanged, but had clinical data supporting biliary or renal elimination.

Class 3 and 4 drugs were classified as primarily excreted renally, with no significant
biliary contribution, or significantly excreted in the bile as follows:

Total Absorbed Dose =100 = f, + fp + fn
fn < 30
70< fo+fp

Here, f. represents percentage of absorbed dose excreted unchanged in the urine, f,
represents percentage of absorbed dose excreted unchanged in the bile, and f,, represents
percentage of absorbed dose eliminated via metabolism. Assuming less than 30% of the
absorbed dose is metabolized for class 3 and 4 drugs allows calculation of the minimum amount
of drug excreted in the bile. Therefore, class 3 and 4 drugs with 35% or less of the parent drug
excreted unchanged in the urine are presumed to be significantly excreted in the bile (= 35%

dose), while drugs with 65% or greater of the dose excreted unchanged in the urine are
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primarily excreted renally, with biliary elimination presumed to be insignificant. Drugs with
35 < f, < 65 were removed due to mathematical uncertainty of the significance of biliary
excretion, since we wanted to initially operate on a set of drugs where preferential biliary or
renal elimination were well differentiated. Drugs excreted in the bile were considered the

positive class.

Model Creation

Using VolSurf+(141-143) at pH=7.5 and default options, 128 descriptors and charge
state at pH=7.5 were calculated for the dataset. Physicochemical properties were calculated in
ADMET Predictor™(30) with default settings at pH=7.4.

The open software R(144) was used for principal component analysis, partial least
squares analysis(145), logistic regression(144), and receiver operating characteristic
curves(146). The open machine-learning software Orange(147) was used for variable selection.

Principal component analysis of the VolSurf+ features was performed using the stats
package in R. The data were scaled and centered. Scores for each component were obtained
and compared between classification groups with the t-test.

The number of variables was minimized to avoid overfitting the data and to
physiologically interpret the results. Variables were ranked according to information gain, which
is an algorithm that assesses the entropy a variable provides to the dataset, and the top 15
variables were selected for analysis. The classification accuracy, specificity, and sensitivity of
variable combinations were assessed for Naive Bayes, k-Nearest Neighbors (kNN), and logistic
regression models with fivefold cross-validation by adding variables in order of information gain.
Variables were left in the model if one or more of the evaluations (classification accuracy,
specificity, or sensitivity) increased for one or more of the models. Optimal variable
combinations were assessed with the VizRank tool in Orange with the following settings: six

attributes, tenfold cross-validation of 100% of the dataset, and were evaluated by average
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accuracy in KNN. Variable selection data are not shown, as the methods were used only for
variable reduction, and not model development and validation.

Partial least squares discriminant with scaling of all variables and six selected variables
was performed using the pls package in R(145). Models were validated by 10x5-fold cross-
validation. Cross-validation training and test sets were randomized and stratified.

Logistic regression models were developed and used to define a decision boundary to
predict drugs excreted in the bile from drugs excreted in the urine using the stats package in
R(144). The default fitting characterized by iteratively reweighted least squares was employed.
Models were validated by 10x5-fold cross-validation. Cross-validation training and test sets
were randomized and stratified. An external dataset was collected, selected from compounds
expressed in the literature as having significant biliary or renal elimination, but which were not
available in the BDDCS classified compounds, or did not meet our initial criteria (fo < 35 or
fe = 65), which was developed to instill certainty in our classifications.

Receiver operating characteristic (ROC) plots were created in the ROCR package(146)
in R. The true positive rate was plotted against the false positive rate and an area under the
ROC curve (AUC) obtained. Thresholds of each model depicting optimal separation between
classes were defined at the minimum distance to the ROC curve from (0, 1) where sensitivity
and specificity were each greater than 0.8. Drugs were assigned class predictions by
considering the value of the feature or model evaluator of a drug in relation to the threshold, and

1 2 v
sensitivity 7P + FN | specificity TN + FP | positive predictive value (PPV) TP + FP | negative

TN TP + TN
predictive value TN + FN | and accuracy TP +TN + FP + FN were calculated, where TP

represents true positives, FP represents false positives, TN represents true negatives, and FN

represents false negatives.
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Additional Considerations

Models trained initially on orally administered drugs were tested with non-orally
administered drugs. A model encompassing all routes of administration was created.
Differences in physicochemical properties between orally administered and non-orally
administered drugs were detected with principal component analysis.

P-gp substrate data were collected from Broccatelli’'s dataset(121) and compared with
renally and biliarily eliminated drugs. The search was extended to other sources for biliarily
eliminated drugs(58,148-154). Drugs were considered non-substrates for efflux ratios < 1.8 and

substrates if the efflux ratio was > 2.2.

RESULTS

From the dataset, 105 of 188 orally administered class 3 and 4 drugs met the primary
excretion class criteria. Of these, 27 were significantly excreted in the bile and 78 were primarily
excreted in the urine. Categorized by ionization state at pH 7.5, 29 drugs were anionic, 26 were
cationic, 33 were neutral, and 17 were zwitterionic. It was noted during analysis that ranitidine
was listed in the database with a fraction excreted unchanged in the urine of 30, but the correct
value is 69, and this adjustment was made(155).

Principal component analysis including all features revealed a clear segregation
between the excretion classes and there was a significant difference between biliarily and

renally eliminated drugs along the first component (p < 1x10®) (Figure 2-1).
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Figure 2-1. First Two Principal Components Including Information from All Features
Calculated by VolSurf+. The first two components contributed 0.457 cumulative variance and

the first-component scores were significantly different between elimination routes (p < 1x10®).

Feature Selection
The following features from VolSurf+ were selected for evaluation: molecular weight

(MW); metabolic stability (MetStab), a calculated prediction of the percent of parent drug
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remaining after metabolism in CYP3A4 supersomes; intrinsic solubility (SOLY); polarizability
(POL), which describes the extent to which a molecule can form an induced dipole in an electric
field(156); hydrophobic surface area (HSA); and rugosity (RUG), a ratio of molecular volume to
surface area. The parameter values for MW, SOLY, POL, HSA, and RUG were the generally
accepted units as follows: MW: Da, SOLY: mol/L at 25°C, POL: A%s*/kg, HSA: A%, and RUG:A,
while MetStab ranges from 0 to 100%. All of the features except MetStab were highly correlated
with each other (Pearson’s R values>0.8) (Table 2-1). The following features were selected in
ADMET Predictor: natural population analysis partial charge on hydrogens (NPAh), number of

CYP Sites (NCYPSites), and LogD (pH=7.4).

Table 2-1. Pearson R Values of Correlations between Features

POL SOLY RUG HSA MetStab
(A%s*kg)®  (mol/L)° (A)° (A?y° (%)
MW (Da)® 0.96 -0.82 0.88 0.87 -0.63
POL (A%s*/kg)° -0.86 0.91 0.94 -0.71
SOLY (mol/L)° -0.81 -0.90 0.76
RUG (A)? 0.84 -0.58
HSA (A%)° -0.78

Abbreviations used defining VolSurf+ descriptors: 2molecular weight, "polarizability,
°solubility, “rugosity, ®hydrophobic surface area, ‘metabolic stabilty

Partial Least Squares Discriminant Model
MetStab+POL was 92.51£0.1% accurate in 10x5-fold cross-validation and was more
accurate than other models (p < 0.01). Table 2-2 highlights the performance of the model

testing sets.
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Logistic Regression Model

Logistic regression resulted in slightly lower performance, but is more appropriate for
classification problems and was selected as the primary model. Sensitivity, specificity, and
accuracy exceeded 0.8 for all models, except NCYPSites + POL (designated as PolG in
ADMET Predictor), which was developed as a comparative model (Table 2-2). Logistic
regression, when molecular polarizability and calculated metabolic stability are considered,
predicts the probability of biliary elimination, given by:

1

—(0.217POL-0.0745MetStab-2.28
e e ) +1

II(x) =

and the optimal threshold predicts biliary elimination when [](x) > 0.237. This can be
transformed into the linear equation depicted as a decision boundary in Figure 2-2:

0 = 0.344 x MetStab - POL+ 5.14. When the combination of MetStab and POL gives a

result < 0, the compound is predicted to be eliminated in the bile. From the external dataset
collected after review, 6/6 biliarily eliminated compounds (100% sensitivity) and 19/24 renally
eliminated compounds (79.2% specificity) were correctly predicted, resulting in 83% accuracy

overall (Appendix Table 1).
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Figure 2-2. Calculated Metabolic Stability and Polarizability of 105 Orally Administered,
Poorly Metabolized Drugs. The decision boundary represents the average threshold
(M(x) = 0.237) of best average sensitivity and specificity of the training group that predicts the

probability of biliary excretion. It is represented by: 0 = 0.344 x MetStab - POL + 5.14.

The predictive ability of individual variables was assessed with ROC plot analysis (Table

2-3 and Figure 2-3).

Table 2-3. Receiver Operating Characteristic Curve Analysis of Individual Features

Validated by 10x5-fold Cross Validation

Feature Sensitivity Specificity PPV NPV Accuracy Threshold
MetStab  0.832+0.154 0.855+0.075 0.678+0.140 0.939+0.055 0.849+0.071 96.8+2.3
POL 0.768+0.167 0.823+0.105 0.630+0.164 0.914+0.060 0.809+0.084 36.2+1.2
Mw 0.761+0.170 0.820+0.095 0.614+0.136 0.912+0.056 0.806+0.079  379£10.
NCYPSites 0.802+0.183 0.910+0.069 0.766+0.178 0.931+0.062 0.882+0.084 22.0+0.2

SLogD  0.78310.192 0.782+0.086 0.561+0.141 0.916+0.069 0.782+0.082 0.187+0.101
NPAh 0.775+0.163 0.863+0.076 0.678+0.152 0.918+0.060 0.840+0.078 5.16+0.08
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Figure 2-3. Receiver Operating Characteristic Curves of 6 Selected Descriptors. The

graphs reflect sensitivity vs (1-specificity) at each value for every descriptor.

Boxplots assessed the distribution of descriptors within each excretion class

(Figure 2-4). The minimum predicted metabolic stability observed in a renally eliminated drug

was 71.8% (levocetirizine), while norfloxacin and leucovorin, drugs eliminated in the bile, were

predicted to be 100% metabolically stable. The median weight of drugs excreted in the bile was

434 Da, with a lower limit of 288 Da. The median weight of drugs excreted in the urine was 282

Da, with an upper limit of 461 Da.
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Figure 2-4. Boxplots of the Selected Variables, Model, and External Validation of the
Model such that the box represents the values between the 25th and 75th percentile and the
median. Tukey-defined extremes are represented by the whiskers and outliers are represented

as individual datapoints.

Although historically biliary excretion was predicted for high molecular weight anionic
drugs(37,138), segregating drugs into ionization classes provided somewhat better performance
of MW as a predictor of excretion class for cationic, neutral and zwitterionic compounds

compared to anionic compounds (Table 2-4).
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Table 2-4. AUC of ROC Curve Representing Molecular Weight When Orally Administered

Compounds Were Segregated into lonization State at pH 7.5

lonization AUC Accuracy
Anion 0.858 0.759
Cation 0.917 0.846
Neutral 0.957 0.970
Zwitter 0.808 0.824

Models Including Non-orally Administered Drugs

Using the same methods outlined for orally administered drugs, PLS models were
developed that included non-orally administered drugs only or all administration routes, but
satisfactory performance was not achieved. Significant differences were observed between the
PCA first-component scores of orally and non-orally administered drugs (p < 1x10°). The
distributions of the variables selected to represent the differences, largely indicative of
hydrophilicity/lipophilicity, size/shape, or permeability, are depicted in Appendix Figure 1.

Eight of 27 orally administered, biliarily cleared and 1/78 renally cleared (methotrexate)
drugs violate Lipinski’'s Rule of Five. Alternatively, 4/11 biliarily eliminated compounds and 17/49

renally eliminated drugs given via the intravenous route violated the Rule of Five.

Clinical Validation of the Classification Scheme and Transporter Effect

Our classification system was compared to clinical data from Yang et al.(37) Ten of the
11 drugs falling within our selection criteria (BDDCS Class 3 or 4, orally administered, with
f,< 35 or f, 2 65 depicting biliary or renal elimination, respectively) were in agreement with the
clinical classifications. To further validate that BDDCS classification and low f, indicate biliary
elimination, we extended the search for clinical data of biliary elimination. In total, there were 18
drugs that we classified as biliarily excreted for which clinical information provided some
indication of presence or lack of biliary elimination. Fifteen of these drugs (83%) indicated likely

biliary excretion from clinical data (Appendix Table 2).
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Efflux data were found for 16 of the 27 biliarily eliminated, orally administered
compounds. Twelve of these 16 drugs were P-gp substrates. Of the remaining four, two were
MRP2 substrates, and one was a BCRP substrate. Six of 15 renally eliminated drugs present in
the Broccatelli dataset were P-gp substrates and nine were non-substrates. Thirty-seven
compounds in our orally administered dataset had S < 400 A? and were all excreted renally.
Calculated metabolic stability is significantly lower (p < 0.0001) for P-gp substrates in this

subset (Figure 2-5).

Py
— p <0.0001
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Figure 2-5. Boxplots of Calculated Metabolic Stability of BDDCS Class 3 and 4 P-gp
Substrates and Nonsubstrates. The box represents the values between the 25th and 75th
percentile and the median. Tukey-defined extremes are represented by the whiskers and

outliers are represented as individual datapoints.

Projecting Non-orally Administered Drugs on the Model
Non-orally dosed drugs tested on the MetStab + POL logistic regression model
developed for orally administered drugs yielded AUC = 0.659, sensitivity = 0.889,

specificity = 0.429, and accuracy = 0.541. AUC determined for POL was 0.818 when all
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administration routes were considered, but drops to 0.671 when only non-orally dosed drugs are
considered. The AUC for MetStab of orally and non-orally dosed compounds is 0.806, while the
AUC of non-orally dosed drugs is 0.673. Figure 2-6 depicts the metabolic stability and molecular

weight of orally and non-orally administered drugs.
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Figure 2-6. Distribution of Calculated Molecular Weight and Metabolic Stability of Orally
Administered Drugs by major route of elimination (a and b) or by route of administration

(cand d).
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Predicting Extensively Metabolized Drugs on the Biliary and Renal Excretion Discriminating
Model

When projected on the MetStab + POL logistic regression and PLS models, respectively,
70.0 £ 5.6% and 73.2 + 0.4% of extensively metabolized parent drugs were predicted as
eliminated in the bile. The AUC of MetStab as an indicator of biliary or metabolic elimination was
0.478 and the p value of the t-test was 0.710. Figure 2-6 depicts the metabolic stability and

molecular weight of drugs by major routes of elimination.

Applicability to Other Software

ADMET Predictor™ has metabolic features including intrinsic clearance for various CYP
isoforms, as well as “number of CYP atoms” and “number of CYP sites”. The AUC for the
number of CYP sites (NCYPSites) predicting primary route of elimination on the subset of poorly
metabolized drugs was 0.858. The number of CYP atoms and CYP sites correlated with
MetStab (Pearson’s R = 0.725 and 0.712, respectively). Polarizability calculations were
reproducible in ADMET Predictor (Pearson’s R > 0.99). The number of CYP sites is correlated

with MW (Pearson’s R = 0.821). Table 2-2 depicts the models’ performance.

DISCUSSION

Classification Scheme

We classified the major route of elimination of drugs using easily obtained and reliable
urinary excretion data (f,), initially filtered by removing highly permeable/extensively
metabolized BDDCS class 1 and 2 drugs. Our classification scheme reliably identifies which
poorly permeable/poorly metabolized drugs are eliminated in the bile, independent of biliary
excretion data. In fact, of the 11 drugs for which direct comparison (orally administered, BDDCS

class 3 and 4, f, < 35 or f, 2 65) with the human dataset compiled by Yang et al.(37) was
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possible, all classifications except methotrexate were in agreement, but this one discordant
classification is expected. While we considered methotrexate’s primary route of elimination as
renal (f,= 81), Yang et al.(37) classified this drug as having significant biliary elimination, since
this group utilized > 10% biliary elimination as the criteria for significant elimination by this route.
However, measurements of parent methotrexate eliminated in the bile range from 3 to 26%, so
variations in classification are expected(37,157-160). Of the drugs we defined as eliminated in
the bile using BDDCS class and f, < 35, 83% agreed with available clinical data (Appendix
Table 2). We expected agreement with clinical data, as BDDCS class 3 and 4 drugs

attribute < 30% of their disposition to metabolism, the fraction excreted as unchanged drug in
the urine was known, and other routes of elimination only impact a small number of drugs. This
demonstrates the utility of BDDCS to characterize the major routes of elimination when

permeability/extent of metabolism and the fraction excreted unchanged in the urine are known.

Application to New Molecular Entities

Prior to any studies in animals or humans for an NME, in vitro permeability data, as
demonstrated by Varma et al.(139) and initially proposed by our laboratory(48,87,140), can
identify which drugs are primarily eliminated by metabolic or non-metabolic (biliary, renal)
routes. Highly permeable drugs are likely extensively metabolized in vivo. Of the poorly
permeable, poorly metabolized drugs, consideration of metabolic stability and polarizability may
be applied to predict the primary route of excretion (biliary or renal), using the relationship
defined below and depicted in Figure 2-2, such that (MetStab, POL) combinations above the
line are predicted as eliminated in the bile, while combinations below the line are predicted as
eliminated in the urine. The probability of biliary elimination is given by

1

—(0.217POL-0.0745MetStab-2.28
et estab=2.28) 4 1

I(x) = (p < 1x10™"") and predicts biliary elimination when

[1(x) > 0.237. This equation can be transposed into a linear equation depicted as a decision
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boundary in Figure 2-2 using the optimal threshold of [](x) = 0.237. Our external dataset was
collected and tested with 83% accuracy, indicating that this model can be applied to compounds

that were not included in the dataset and may perform well on NMEs.

Importance of Metabolic Stability

The VolSurf+ calculated metabolic stability model was created from a PLS of 94
parameters calculated in VolSurf+ and was initially created using in vitro data from 1800
compounds incubated with CYP3A4 human cDNA microsomes. The value of calculated
MetStab represents the fraction of a drug predicted to remain unmetabolized by CYP3A4 in
vitro. These calculations have been validated, and accurately predict the in vitro metabolic
stability of 85% of the tested drugs(32). With a large number of parameters contributing to the
model, individual descriptors do not contribute greatly, but trends of lipophilicity and size appear
to drive the MetStab model. Metabolically unstable compounds tend to have wide hydrophobic
interactions, high amphiphilicity, as well as high polarizability and size, and hydrogen bond
acceptor groups. Stable compounds, on the other hand, tend to have dense polar regions, large
polar surfaces, and high hydrophilic-lipophilic balances, descriptors that largely indicate that
stable compounds are more hydrophilic than unstable compounds(32). With no significant
difference in MetStab between metabolized and biliarily eliminated compounds (Figure 2-6b),
we believe that this term reflects hepatic access. Specifically, we expect that this finding could
be explained by one or more of the following phenomena: 1) biliarily eliminated compounds with
low MetStab may be substrates of metabolizing enzymes in vitro, but are stronger substrates of
transporters in vivo and therefore are eliminated unchanged in the bile, 2) as 70% of
metabolized compounds were predicted as eliminated in the bile, we expect many metabolized
compounds are in fact partially biliarily eliminated in vivo, but a third condition, high permeability

rate, allows the drug to be reabsorbed into hepatocytes, such that hepatic metabolism is the

75

www.manaraa.com



ultimate mode of elimination, and/or 3) low metabolic stability predicts which class 3 and 4 drugs
are P-gp substrates.

Predictions of extensively metabolized drugs in a naive dataset were heavily skewed
toward biliary elimination, partially due to overlapping MetStab (Figure 2-6b). Some studies
have identified compounds that are metabolically unstable in vitro, but are primarily eliminated
as unchanged drug in vivo(21,22). Our data indicate that this may be because biliarily
eliminated drugs may be metabolically unstable CYP substrates in vitro, but competition with
transporters on the canalicular membrane in vivo partially determines the molecule’s fate.

Permeability of hepatically available compounds likely plays a great role in the observed
disposition of a drug. Highly permeable/extensively metabolized drugs may be capable of being
partially eliminated in the bile initially, but are sufficiently permeable to be reabsorbed into
hepatocytes, resulting in low excretion of unchanged drug, but extensive metabolism in vivo.
Gustafson and Benet showed that 46% of a phenolphthalein glucuronide dose administered
directly to the bile duct in cannulated rats was available in the plasma, indicating the possibility
of molecular reabsorption from the bile duct (161). The same phenomenon is predicted with
highly permeable drugs initially filtered or secreted in the urine(87), following the observation
that extensively metabolized drugs show high permeability rates.

The final hypothesis is based on the well-known substrate overlap between CYP3A4 and
P-gp(66). Although the MetStab model was developed to predict CYP3A4 substrates,
considering the intrinsic overlap of substrates, low MetStab may also tend to predict affinity for
P-gp. Correspondingly, we saw that class 3 and class 4 P-gp substrates had low calculated
MetStab (predicted in vitro CYP3A4 substrate) (Figure 2-5) while nonsubstrates had significantly
higher MetStab (p < 1><10‘4). To point, compounds that were incorrectly predicted by the model
in part due to a MetStab value uncharacteristic of the compound’s excretion route were either
substrates of hepatic canalicular efflux transporters besides P-gp (norfloxacin is a substrate of

BCRP) or were P-gp substrates and renally eliminated (acrivastine, levocetirizine). Renally
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eliminated compounds that are substrates for P-gp, which is present in both the liver and kidney
among many other tissues, might not be substrates for hepatic uptake transporters, and are
therefore not biliarily accessible. As others have hypothesized, hepatic uptake, particularly by
OATPs, may be a rate-limiting step in biliary excretion(38,123). Indeed, acrivastine and
levocetirizine were not found to be substrates of major hepatic uptake transporters in the
literature.

We believe that each of these previously noted observations play a role in the surprising

finding that biliarily eliminated compounds are predicted to be metabolically unstable.

Polarizability and MW

Polarizability, which is highly correlated with MW, was the best secondary predictor, and
may describe the physiological recognition of biliarily eliminated compounds better than the
conventional molecular weight (Table 2-3). This simple property quantifies the ability of the
molecule to distort its own electron density when interacting with other molecular entities;
polarizability is therefore a measure of the non-specific weak intramolecular dispersion forces
and has been shown to correlate with a number of biological properties by Hansch and
Kurup(162), and has been found to contribute to biliary excretion by others(39,41). Polarizability
could account for non-specific weak interactions between a drug molecule and transporter
proteins(163). Highly polarizable molecules may be more apt to interact with hepatic uptake and

efflux transporters on hepatic membranes.

Historical and Current Relevance of Molecular Weight and Correlated Features
Drugs eliminated in the bile tend to have a high POL, MW, RUG, and HSA, or a low
SOLY compared to renally cleared compounds (Figure 2-4). Physiologically, these descriptors

may predict that hydrophilic molecules are more likely to remain in blood and less likely to
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partition into the basolateral membranes of hepatocytes. Small hydrophilic molecules may
bypass hepatic elimination and be filtered through the glomerulus at the kidney.

As historically proposed, molecular weight may be a reliable surrogate for physiological
processes that contribute to the excretion route of poorly metabolized/poorly permeable drugs
(Figure 2-4 and Table 2-3). In our dataset, this occurs regardless of charge state (Table 2-4).
Predicting that poorly metabolized, orally administered drugs with a MW > 380 Da are
significantly eliminated in the bile, while those with a MW < 380 Da are renally eliminated will
correctly predict the excretion route greater than 80% of the time. Poorly permeable, orally
administered drugs with a MW < 288 Da will almost certainly be eliminated in the urine, while
those with MW > 462 Da will almost certainly be eliminated in the bile. This is similar to the
proposed cut-off for anions at 475 Da by Yang et al.(37).

We believe we are the first to emphasize that these molecular weight cutoffs only apply
for orally administered, poorly metabolized drugs (i.e., BDDCS classes 3 and 4). As we and
others(37) have demonstrated, low molecular weight compounds will largely be eliminated by
extra-biliary routes no matter the route of administration or BDDCS class. However, there are
many high molecular weight compounds that are extensively metabolized (Figure 2-6a) or non-
orally administered, renally eliminated drugs (Figure 2-6¢). These compounds represent false
positives that overwhelm the true positives when using high MW as a basis of predicting biliary
elimination (Table 2-5). Demonstrating this principle, tiotropium bromide, a renally eliminated
compound, was incorrectly classified as biliarily eliminated by the model, but upon investigation,
was incorrectly classified as orally administered(54) and is actually an inhaled drug. Additionally,
metabolized drugs account for 73% of drugs on the market and 72% of NMEs(87), and the
proportion of high molecular weight drugs is skewed toward metabolism. While the MW of
extensively metabolized drugs slightly increases over the years, as defined by CAS number
(Pearson’s R = 0.38), the MW of biliarily excreted drugs is not changing over time (Pearson’s

R = 0.05).
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Table 2-5. Population of Compounds in Molecular Weight Groups by Route of
Administration and Elimination

Molecular Weight (Da)

Major Elimination Route > 380 <380 > 475 <475
Oral Administration
Biliary 22 5 13 14
Renal 13 65 0 78
Metabolism 153 345 53 445
Nonoral Administration
Biliary 11 1 7 5
Renal 42 21 21 42
Metabolism 42 50 29 63

Active Efflux in Biliary Excretion

We hypothesize that active transport results from both necessity (highly protein-bound
compounds cannot be passively filtered) and convenience (unbound drugs with high POL may
be good in vivo transporter substrates). P-gp is a promiscuous transporter that is expressed on
the bile canalicular membrane and in various other tissues. Due to its promiscuity and a relative
deficit of known substrates for other ABC transporters, we hypothesize that many biliarily
eliminated drugs must be substrates of P-gp. Available data of P-gp substrates indicate that this
is true, and that active efflux is a mandatory process of biliary elimination, excepting saxagliptin.
Further investigation indicated that the f may have been incorrectly reported for saxagliptin, as
the bioavailability was not reported(164). Unsurprisingly, P-gp efflux does not overwhelm the
transport of renally eliminated drugs. Poorly permeable, poorly metabolized drugs that are not
substrates for P-gp or other hepatic efflux transporters are likely eliminated renally. As biliarily
eliminated compounds are poorly permeable, as predicted by BDDCS, and observed by
others(139), we expect that hepatic uptake must be an active process. Varma et al. showed the
overlap in physicochemical properties between drugs that were biliarily eliminated in rats and

drugs that are substrates for human OATP, including high MW(38). As biliarily cleared drugs
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have high MW/POL, they may be substrates for OATPs, while many renally cleared drugs may
not be. While a number of the drugs that we classified as biliarily eliminated are P-gp substrates
and there are many biliarily eliminated compounds that are substrates for OATP, other
transporters can also play a role, and, although they were not investigated, may correlate with

properties such as high polarizability and low metabolic stability.

Administration Route

Physicochemical differences exist between orally and non-orally dosed drugs and
considering the groups together can confound model predictions. Specifically, orally
administered drugs are more permeable and lipophilic, while non-orally administered drugs tend
to be more polar, hydrophilic, and larger (Appendix Figure 1). Specifically, high MW/high POL
appears necessary for biliary elimination, but low MW/ low POL is not necessarily indicative of
renal elimination, particularly when a drug is not orally administered. The glomerulus begins
filtering out molecules when MW > 10,000 Da(35) and thus, molecular size of unbound small
molecule drugs may be unimportant at the kidney. Instead, protein binding may be a key
deciding factor of elimination route at the kidney. Protein-bound compounds cannot be filtered
through the glomerulus (albumin MW = 67,000 Da) and passively eliminated by the kidney, so
will require active transport into an eliminating organ. We hypothesize that, by requiring an
active process, many of these highly protein-bound compounds would be eliminated in the bile.
We noticed that biliarily eliminated compounds were indeed more highly bound to plasma
proteins than renally cleared compounds, for both orally and non-orally administered
compounds (Appendix Figure 2).

Almost 1/3 of biliarily excreted drugs that are orally administered, and therefore
presumed to be reasonably well-absorbed, violate Lipinski’'s Rule of Five. These rules do not
predict oral absorption when transporters mediate absorption, which is presumed to always be

true for poorly permeable drugs, including those eliminated in the bile(87). Our model suggests
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that prior to dosing an NME to animals or humans, the major unknown in predicting whether
biliary or renal excretion will be the major route of excretion of the NME, will be knowledge of
whether the compound can achieve its desired effects following oral dosing. If oral dosing is
feasible, the accuracy of the prediction of biliary versus renal excretion should be quite good.
There would be less confidence in this prediction if oral dosing is not feasible. However, as
noted above in characterizing drug disposition in humans, probably the most difficult mechanism
to define is the differentiation between poor absorption and biliary excretion of parent drug. This
is, however, the issue addressed here. Therefore, we recommend that drugs predicted to be

poorly absorbed using Lipinski’'s Rule of Five be evaluated for intestinal uptake.

lonization Status

Although other groups have suggested that charged groups play a role in biliary
elimination(37-39), our data indicate that charge is a relatively unimportant factor distinguishing
primary modes of elimination, perhaps because transporters exist for each charged state in both
the kidney and the liver and charge is not a limiting factor for active transport. For instance,
OATPs can transport anions, amphipathic compounds, and some cations, while OCTs, OCTNs,
and MATEs specifically transport cations and OATs specifically transport anions. The efflux
transporter MDR1 can transport both cationic and amphipathic compounds, while MDR3, MRPs,
and BCRP are responsible for transporting anions. Interestingly, cations exhibit the greatest
range of molecular weights, including the lowest and highest MW for drugs eliminated in the
bile. This may be a result of P-gp efflux into the bile, which is well known to be a promiscuous

transporter.

CONCLUSIONS
* We have developed a novel classification scheme and model predicting significant biliary

excretion. This model does not rely on unreliable animal models and is not limited by
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scantily available human biliary excretion data. This model is supported by analyses
developed from in vivo data.

The model proposed here takes advantage of the BDDCS system, which allows
identification and classification of highly metabolized (high permeability rate) drugs
versus poorly metabolized (low permeability rate) drugs. Biliary and renal elimination of
unchanged drug will not be significant for high permeability compounds. Thus, the
methodology here is useful for differentiating biliary versus renal elimination for poorly
metabolized/poorly permeable BDDCS class 3 and 4 drugs.

We show that in silico determinations of metabolic stability may provide a simple
mechanism for predicting significant biliary elimination, especially when co-employed
with polarizability.

This model, utilizing polarizability and metabolic stability, can be applied to new
molecular entities to predict the major route of elimination when the extent of metabolism
is known or predicted from in vitro permeability data, but its accuracy will be poorer for
NMEs that cannot be dosed orally.

Compounds that violate Lipinski’s Rule of Five should be evaluated for intestinal uptake,

as these compounds may be well-absorbed and eliminated in the bile.
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CHAPTER 3. PREDICTING THE EXTENT OF METABOLISM USING IN VITRO PERMEABILITY

RATE MEASUREMENTS AND IN SiLICO PERMEABILITY RATE PREDICTIONS'

ABSTRACT

The Biopharmaceutics Drug Disposition Classification System (BDDCS) can be utilized
to predict drug disposition, including interactions with other drugs and transporter or
metabolizing enzyme effects based on the extent of metabolism and solubility of a drug.
However, defining the extent of metabolism relies upon clinical data. Drugs exhibiting high
passive intestinal permeability rates are extensively metabolized. Therefore, we aimed to
determine if in vitro measures of permeability rate or in silico permeability rate predictions could
predict the extent of metabolism, to determine a reference compound representing the
permeability rate above which compounds would be expected to be extensively metabolized,
and to predict the major route of elimination of compounds in a two-tier approach utilizing
permeability rate and a previously published model predicting the major route of elimination of
parent drug. Twenty-two in vitro permeability rate measurement data sets in Caco-2 and MDCK
cell lines and PAMPA were collected from the literature, while in silico permeability rate
predictions were calculated using ADMET Predictor™ or VolSurf+. The potential for
permeability rate to differentiate between extensively and poorly metabolized compounds was
analyzed with receiver operating characteristic curves. Compounds that yielded the highest
sensitivity-specificity average were selected as permeability rate reference standards. The
major route of elimination of poorly permeable drugs was predicted by our previously published
model and the accuracies and predictive values were calculated. The areas under the receiver
operating curves were > 0.90 for in vitro measures of permeability rate and > 0.80 for the

VolSurf+ model of permeability rate, indicating they were able to predict the extent of

T Modified from Hosey CM, Benet LZ. Predicting the extent of metabolism using in vitro permeability rate measurements and in silico
permeability rate predictions..Mol.Pharm. 2015;12:1456—66.
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metabolism of compounds. Labetalol and zidovudine predicted greater than 80% of extensively
metabolized drugs correctly and greater than 80% of poorly metabolized drugs correctly in
Caco-2 and MDCK, respectively, while theophylline predicted greater than 80% of extensively
and poorly metabolized drugs correctly in PAMPA. A two-tier approach predicting elimination
route predicts 72+9%, 49+10%, and 6617% of extensively metabolized, biliarily eliminated, and
renally eliminated parent drugs correctly when the permeability rate is predicted in silico and
74x7%, 85+2%, and 73+8% of extensively metabolized, biliarily eliminated, and renally
eliminated parent drugs correctly, respectively when the permeability rate is determined in vitro.
These data suggest that while in silico permeability rates can predict extensively metabolized
and renally eliminated drugs reasonably well, in vitro permeability rate data are necessary to

confidently predict biliary elimination of parent drug.

INTRODUCTION

Absorbed drugs are predominately eliminated from the body via metabolism or secretion
of unchanged drug in the bile or the urine. Elimination is a multi-factorial process mediated in
part by passive permeability, drug transport, and substrate specificity to transporters and
metabolizing enzymes. Understanding which route predominates in the disposition and
elimination of a drug can help pharmaceutical scientists anticipate potentially dangerous
interactions with other drugs, endogenous molecules, and food. Additionally, processes
associated with drug elimination can be utilized to aid in drug delivery. For instance, a drug that
is eliminated in the bile can undergo enterohepatic recycling, exposing the drug to the liver and
intestine multiple times, while a concern for extensively metabolized drugs may be susceptibility
to extensive first pass metabolism.

In 1995, the development of the Biopharmaceutics Classification System (BCS)
recognized that drug permeability can predict the extent of drug absorption(49). Ten years later,

Wu and Benet(48) proposed the Biopharmaceutics Drug Disposition Classification System
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(BDDCS), which recognized that drugs exhibiting a high passive intestinal permeability rate
were also extensively metabolized, while low permeability rate drugs were primarily eliminated
as unchanged drug in the bile or the urine. This may be because highly permeable drugs are
passively reabsorbed from the urine or the bile, and require metabolism to a more polar
compound to be successfully eliminated from the body. BDDCS classifies drugs based on their
extent of metabolism and solubility. BDDCS class 1 and 2 drugs are extensively metabolized,
while poorly metabolized drugs, which are primarily eliminated as parent drug in the bile or the
urine, populate classes 3 and 4. The BCS is used by the FDA and the EMA to grant biowaivers
to certain highly permeable, highly soluble drugs(55). Therefore, a number of assays are
outlined to qualify a drug as highly permeable, including determining the in vitro permeability
rate in monolayer-cultured epithelial cells(51). Ideally, this principle could be applied to predict
the extent of metabolism prior to in vivo studies. Recently, Varma et al. demonstrated that
BDDCS class can be provisionally classified by in vitro permeability rate, measured in MDCK-II
cells in their study, and solubility(139). Cell-based in vitro permeability rate is typically measured
in human colorectal adenocarcinoma cells (Caco-2) or Madin-Darby canine kidney (MDCK)
cells, epithelial cell lines that are cultured as monolayers. Alternatively, permeability rate can be
measured in the parallel artificial membrane permeability assay (PAMPA). Permeability rate is
often expressed as an absorptive rate, in the apical to basolateral direction. We expect that the
permeability rate measured in this direction will relevantly predict the extent of metabolism, as
we hypothesize that reabsorption of high permeability-rate drugs across the apical membranes
of the kidneys (i.e. from the tubule) or the liver (i.e. from the bile) result in poor excretion of
unchanged drug and a high extent of metabolism. Permeability rate measurements vary
significantly between laboratories due to differences in experimental conditions such as cell
source, passage number, culture media, cell density, monolayer age, or transport buffer(165).
As a result, permeability rate measurements should be carried out in single laboratories and

compared with a reference standard to categorize if a drug is highly or poorly permeable.

85

www.manaraa.com



Metoprolol is widely used as a reference compound to define highly permeable or highly
absorbed drugs(166), but studies have suggested that it is too conservative(13,167), resulting in
incorrect classification of drugs that would otherwise be considered highly permeable and
potentially subject to a biowaiver in BCS, or correctly classified as extensively metabolized in
BDDCS. Furthermore, normalization of permeability rate to metoprolol’'s permeability rate does
not reduce the variability of quantitative measurements to predict absorption between
laboratories(140).

In the previous chapter, we presented an in silico logistic regression model utilizing
polarizability and predicted metabolic stability. This model successfully predicted the major route
of elimination of poorly metabolized parent drugs, i.e., biliary versus renal(23). When we tested
extensively metabolized drugs on this model, we noted that many extensively metabolized
drugs shared similar in silico properties with poorly metabolized drugs that are primarily
eliminated as unchanged drug in the bile, i.e., a high polarizability or molecular weight and a low
predicted metabolic stability. Although high molecular weight was historically predictive of biliary
elimination, we showed that greater than 80% of orally administered drugs with MW > 380 Da,
the molecular weight threshold that we calculated(23), and greater than 80% of orally
administered drugs with MW > 475 Da, the molecular weight threshold for anions calculated by
Yang et al.(37), were extensively metabolized. Although high molecular weight/polarizability and
low predicted metabolic stability identify both biliarily eliminated and many extensively
metabolized drugs, we expected that in vitro permeability rate measurements or in silico
permeability rate predictions could differentiate poorly metabolized drugs, including those
eliminated in the bile, from extensively metabolized drugs.

This study aims to demonstrate the utility of in vitro permeability rate measurements and
in silico permeability rate predictions in defining the extent of metabolism using 22 in vitro
permeability rate datasets drawn from the literature and BDDCS classification as defined by

Benet et al.(54). Additionally, we evaluate lipophilicity as a surrogate estimation of permeability
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rate. We aim to determine a less conservative permeability rate reference compound than
metoprolol that produces the most accurate predictions of the extent of metabolism. Finally, we
predict the major route of drug elimination by combining extent of metabolism predictions based
on permeability rate with a logistic regression model(23) predicting the elimination route of

unchanged drugs.

METHODS

Datasets

Caco-2, MDCK, and PAMPA data were obtained from the literature(139,168-185). We
required experimental values in each dataset to be determined in the same laboratory. Datasets
considering only one therapeutic drug class (e.g. fluoroquinolones) were not selected for
analysis. To be included in our analysis, at least 4 extensively metabolized and 4 poorly
metabolized drugs were required to be in the dataset. The data were reported as P, (x 10
cm/s) in the apical to basolateral direction. In silico permeability predictions were calculated in
ADMET Predictor™ (Simulations Plus, Inc.) with default settings at pH = 7.4 or in
VolSurf+(142,143) with default options at pH = 7.5 using the predefined models S+ MDCK and

S+ Pest from ADMET Predictor™ (available from http://www.simulations-plus.com) or CACO2

from VolSurf+ (available from http://www.moldiscover.com). Measured octanol/water partition

coefficients (mLogP) were obtained from Benet et al.(54), calculated octanol/water partition
coefficients (cLogP) were determined in ADMET Predictor and VolSurf+, and calculated
cyclohexane/water partition coefficients were determined in VolSurf+. BDDCS class was
assigned using the classifications assigned by Benet et al.(54). BDDCS classes 1 and 2 are
extensively metabolized, while classes 3 and 4 are poorly metabolized. Drugs were removed
from the permeability rate datasets when BDDCS class and therefore extent of metabolism was

not categorized by the Benet et al. dataset. In vitro measured permeability rate, predicted in
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silico permeability rate, and measured or calculated LogP was assessed with bootstrapped area
under the receiver operating characteristic (ROC) curve (AUC) for their abilities to differentiate
the extent of metabolism (extensively versus poorly metabolized). AUCs > 0.8 are considered
representative of significant differentiability, while values approaching 0.5 represent a lack of

discrimination.

Optimal Permeability Rate Reference Standard Determination and Classification Statistics
For analysis, extensively metabolized drugs were considered the positive class, while
poorly metabolized drugs were considered the negative class. Drugs present in 3 or more
datasets were evaluated for their effect on the sensitivity (ratio of true positives to all positives,
representing how accurately extensively metabolized drugs are predicted), specificity (ratio of
true negatives to all negatives, representing how accurately poorly metabolized drugs are
predicted), positive predictive value (PPV, the ratio of true positives to predicted positives,
representing how accurately high permeability rates describe extensively metabolized drugs),
and negative predictive value (NPV, the ratio of true negatives to predicted negatives,
representing how accurately low permeability rates describe poorly metabolized drugs).
Optimal permeability rate standards were selected for each cell line by choosing the
drug giving the maximum average of sensitivity and specificity, with the requirement that
sensitivity, specificity, negative predictive value, and positive predictive values must all be

greater than 0.7.

Two-tier Approach to Predicting Major Elimination Route

Two datasets(139,170) (Varma, Skolnik) met the initial dataset inclusion criteria and
included at least 4 drugs from each of the three major routes of elimination, as previously
defined(23). To expand the analysis, we included the Pham-The dataset that reports an average

permeability rate from many sources(186). As the logistic regression model can only usefully be
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applied to orally administered drugs(23), we reduced each dataset to orally administered drugs
only. We applied the previously defined logistic regression model(23) using predicted metabolic
stability and polarizability to poorly permeable compounds and calculated the accuracy and

predictive ability of a two-tier classification approach (Figure 3-1).

Compound X

[ 1
High Permeability Rate, Low Permeability Rate

(2 Reference) (< Reference)

Predict Elimination as
Unchanged Drug

Apply Logistic
Regression
Model®

Predict Renal
Elimination

Predict Extensive
Metabolism

Predict Biliary
Elimination

Figure 3-1. Two-tier Approach to Predicting Major Route of Elimination utilizing in vitro
permeability rate to determine extent of metabolism and the previously defined logistic
regression model to predict major route of elimination of poorly metabolized drugs. “Logistic

regression model including calculated polarizability and metabolic stability published by Hosey

et al.(23): I(x) = e_(0_217P0L_0_07:5Met5mb_2_28)+1 .When II(x) > 0.237, the drug is predicted to be

eliminated in the bile.

In silico permeability rate models were evaluated for their performance in the two-tier
approach. Permeability rates were predicted in ADMET Predictor with the S+ MDCK model and
the S+ P.gsmodel and in VolSurf+ with the CACO2 model. 100x5 fold cross validation was
performed as follows: the stratified dataset was randomly assigned to 5 groups 100 times. For
each of the 100 randomizations, a numeric permeability rate threshold giving the maximum
average between sensitivity and specificity was calculated from 4/5 of the stratified data. The

threshold was applied to predict the extent of metabolism of each compound and the previously
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published logistic regression model predicting the major route of elimination of poorly permeable
drugs was applied. The performance of this process was tested on the remaining 1/5 of the
stratified data. This process was repeated 5 times, using each progressive 1/5 of the data as a
test set. After sampling through 100 randomizations, the threshold and the performance values
were averaged to represent the selected numeric threshold and performances specific to each

in silico model.

Improving Permeability Rate Rredictions

To detect regions of permeability rate with very high predictability, we selected a “low”
permeability rate standard, such that drugs with permeability rates less than this standard were
very likely to be eliminated unchanged (NPV > 0.8). We also selected a “high” standard, which
reflected a permeability above which drugs were very likely to be extensively metabolized. We
considered drugs that were present in all of the Pham-The, Skolnik, and Varma datasets, and
that gave a high predictive value (PPV or NPV > 0.8) among the datasets predicting extent of

metabolism.

RESULTS

Dataset

Eleven Caco-2 datasets, 5 MDCK datasets, and 6 PAMPA datasets met the criteria for
dataset inclusion, with in vifro permeability rate measurements obtained for 214 drugs.
Appendix Table 3 details the population of compounds by cell line and extent of metabolism.
When biliarily eliminated drugs were listed as part of the dataset, the table details the population

of compounds via the major routes of elimination.
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In Vitro Permeability Models

The area under the ROC curve is a metric that is independent of threshold selection (in
this case, the permeability rate of the selected reference compound), but portrays the ability of a
feature (e.g. permeability rate) to discriminate between two classes (e.g. poorly or extensively
metabolized drugs). Table 3-1 reports the ROC AUCs of in vitro permeability rate measures and
in silico permeability rate predictions as discriminators of the extent of metabolism when
comparing extensively metabolized drugs to: all poorly metabolized drugs, drugs primarily
eliminated as unchanged drug in the urine, and drugs primarily eliminated as unchanged drug in
the bile. The last column exhibits the AUC when comparing the permeability rates of drugs
primarily eliminated as unchanged drug in the bile to those eliminated as unchanged drug in the

urine.
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Table 3-1. Area Under the Receiver Operating Characteristic Curve for Bootstrapped

Sampling of Measured or Predicted Permeability Rate as a Predictor of Extensively

Metabolized and Poorly Metabolized Drugs Eliminated Primarily as Unchanged Drug in

Either the Bile or Urine

Extensive Metabolism vs

Elimination as Renal elimination : B'llla_ry Biliary
unchanged of unchanged elimination of Vs
drug (N) drug (N) unchanged Renal
drug (N)
In Vitro Model
Caco2 0.93+0.07 (11) 0.90+0.11(11) 0.82 (1) 0.53 (1)
MDCK 0.91 £0.03 (5) 0.95 £ 0.02 (5) 0.89 (1) 0.53 (1)
PAMPA 0.93 + 0.05 (6) 0.95 £ 0.04 (6) - 0.71 (1)
In Silico Model
AP MDCK 0.78+0.03 0.82+0.04 0.81+0.05 0.56+0.09
AP Peff 0.74+0.03 0.7610.04 0.69+0.07 0.58+0.09
VS+ CACO2 0.82+0.03 0.81+0.07 0.87+0.03 0.61+£0.10

(N) represents the number of datasets
AP: ADMET Predictor

VS+: VolSurf+

Permeability Standard Selection and Validation

The drugs that met the criteria for standard reference drug selection, listed in order of

decreasing average between sensitivity and specificity were: labetalol, dexamethasone, and

methylprednisolone for the Caco-2 cell line; zidovudine and labetalol for the MDCK cell line; and

theophylline and metoprolol for PAMPA. The drugs selected as permeability rate reference

compounds for each in vitro method and the mean classification statistical values are reported

in Table 3-2a. Table 3-2b indicates the number of drugs used in the datasets to generate the

performance measures listed in Table 3-2a. Performance of the selected standards in

alternative cell lines is also shown.
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High (metoprolol) and low (chlorothiazide) permeability rate standards were selected to
provide more discriminating predictability in extreme permeability rate regions. The low
permeability rate reference standards selected were: chlorothiazide, hydrochlorothiazide,
nadolol, furosemide, atenolol, and pravastatin. Selecting chlorothiazide as the standard resulted
in the highest predictive performance of drugs predicted to be eliminated in the bile (4/6, 3/7,
and 8/22 in Varma, Skolnik, and Pham-The, respectively), with the highest retention (specificity)
of renally cleared drugs, which are 100% predictive. Metoprolol was selected due to its historical
relevance as a permeability rate reference compound, with evidence of high positive predictive
values (Table 3-2a). Among all datasets including either metoprolol or chlorothiazide, 97+5%
(n=20) of the compounds with permeability rate greater than that of metoprolol were
metabolized, while 90+14% (n=8) of the compounds with permeability rates less than that of
chlorothiazide were poorly metabolized. Table 3-2a shows the PPV and NPV of selected
intermediate standards. For extensively metabolized drugs, the intermediate permeability rate
standards (e.g. labetalol, zidovudine) approach the PPV of metoprolol, but for poorly
metabolized drugs, the intermediate permeability rate standards do not approach the NPV of
chlorothiazide. Selecting metoprolol and chlorothiazide as additional standards allowed us to
consider the regions of permeability rate that are highly predictive (low and high permeability
rates), as well as regions of permeability rate with a higher degree of uncertainty in the
predictability (low-intermediate and high-intermediate permeability rates). Table 3-3 depicts the
predictive values when a compound has a low-intermediate permeability rate (predicted to be
poorly metabolized), bounded by the permeability rates of chlorothiazide and the selected
reference compound, or high-intermediate permeability rate (predicted to be extensively
metabolized), bounded by the permeability rates of the selected reference compound and

metoprolol.
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Table 3-3. Predictive Values of Intermediate Regions of Permeability Rates

Reference NPV? of permeability rates N° PPV°® of permeability rates N
(Chlorothiazide to Reference) (Reference to Metoprolol)
Labetalol 0.59+0.27 7 0.87+0.07 7
Zidovudine 0.63+0.25 6 0.7710.29 5
Dexamethasone 0.50+0.19 6 0.85+0.08 9
Theophylline 0.38+0.25 4 0.83+0.26 11
Methylprednisolone 0.52+0.19 5 0.86+0.10 5
Salicylic Acid 0.55+£0.17 4 0.94+0.06 4
Hydrocortisone 0.48+0.11 5 0.88+0.12 9

NPV is the negative predictive value. °N represents the number of datasets including both the
reference compound and chlorothiazide or metoprolol. PPV is the positive predictive value.

Two-tier Predictions

Table 3-4 depicts the predictive values and accuracies for each elimination route and the
accuracy of predicting the major route of elimination when utilizing a two-tier prediction. The in
vitro two-tier prediction first uses a drug’s permeability rate as compared to a standard reference
compound to predict the extent of metabolism, and then applies the previously published logistic
regression model(23) to predict the major route of elimination (biliary or renal) of compounds

predicted to be poorly metabolized parent drugs.
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Figure 3-2 provides a visualization of the permeability rates of drugs by elimination route,
compared with selected high (metoprolol), intermediate (zidovudine, dexamethasone), and low

(chlorothiazide) permeability rate standards, and shows the predicted excretion route of parent

drug.
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Figure 3-2. Two-tier Predictions of Major Elimination Route using in vitro permeability rate

and in silico predicted elimination route of parent drug, segregated by the actual elimination

route. Points within the grey boxes represent accurately predicted drugs. The number of
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correctly predicted drugs is labeled within the bounds of the permeability rate reference

standard compounds for each elimination route.

The two-tier approach using in vitro permeability rate data and the selected reference
compounds as noted in group | in Table 3-4A resulted in an accuracy of 74+7%, 85+2%, and
7318% for extensively metabolized, biliarily eliminated, and renally eliminated drugs,
respectively, while choosing alternative compounds, listed in group Ill in Table 3-4A resulted in
an accuracy of 7116%, 83+4%, and 73112% for extensively metabolized, biliarily eliminated,
and renally eliminated drugs, respectively. Group Il represents the predictability of permeability
rate in very high (= metoprolol) or very low (< chlorothiazide) permeability rate regions. Group IV
depicts the accuracy and predictability when indinavir, which gave the highest accuracy among
the three datasets, but did not meet initial standard reference selection criteria, was selected as
an intermediate reference compound.

Table 3-4B shows the performance of the two-tier prediction approach using in silico
models to predict permeability rate/extent of metabolism utilizing the numeric threshold selected
via 100x5 fold cross validation for each model, accurately predicting 72+9%, 49+10%, and
661+10% of metabolized, biliarily eliminated, and renally eliminated compounds respectively,
where the VolSurf+ CACO2 model resulted in the highest predictability for biliary and renal
elimination, and comparable predictability of metabolized compounds with the ADMET Predictor

models.

Extreme Outliers

Table 3-5 shows the compounds classified as extensively metabolized, but having a very
low (< chlorothiazide) permeability rate in at least one dataset and compounds classified as
poorly metabolized, but having a very high (> metoprolol) permeability rate in at least one

dataset.
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Table 3-5. Compounds Exhibiting Permeability Rates Uncharacteristic of the Extent of

Metabolism in One or More Datasets

Drug Classified Outlier Dataset Notes® Ref
Extent of |Frequency®
Metabolism
A. Outlier Compounds with Reported Permeability Rate < Chlorothiazide
A Extensive first pass (187)
Bromocriptine Extensive 1/2 metabolism
Clofibrate Extensive 1/1 A Prodrug (188)
Cyclosporine Extensive 1/1 A Extensively Metabolized | (189)
Enalapril Extensive 1/2 A Prodrug (190)
Ketoconazole Extensive 1/3 A Extensively Metabolized
8.C Gut metabolism or Poor (191)
Saquinavir Extensive 2/2 Bioavailability
Sulfasalazine Extensive 3/7 ABD T Metabolized by bacteria | (192)
B. Outlier Compounds with Reported Permeability Rate > Metoprolol
Atenolol Poor 1/16 F Eliminated Unchanged
A 40-50% unchanged,
remainder is the disulfide
dimer of captopriland | (193)
captopril-cysteine
Captopril Poor 1/1 disulfide
Cephalexin Poor 1/4 B Eliminated unchanged | (194)
Ciprofloxacin Poor 1/4 E Eliminated unchanged | (195)
Clonidine Poor 2/3 AB Extensively Metabolized | (196)
F 50% eliminated
unchanged, 30% (197)
Disopyramide Poor 1/3 metabolized
Flecainide Poor 1/1 5 Extensively Metabolized | (198)
Metoclopramide Poor 1/1 c Extensively Metabolized | (199)
Phenazopyridine Poor 1/1 c Extensively Metabolized | (200)
Pindolol Poor 1/9 A Extensively Metabolized | (201)
: 40-70% eliminated
unchanged,
approximately 50%
acetylated with a large | (202)
range; acetylation may
depend upon acetylator
Procainamide Poor 1/1 phenotype
Trimethoprim Poor 1/6 A 60-80% unchanged | (203)

AZhu; PSkolnik; “Varma; "Wang; FSugano; "Teksin

@ Outlier frequency represents the number of times the compound exhibited an
uncharacteristic permeability rate per the number of times the compound and the
reference compound (chlorothiazide or metoprolol) were in the same dataset.

® Notes reflect characteristics of the compound, which may be valuable in understanding
the uncharacteristic permeability rate.
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We considered the regions of high permeability rate in each dataset that were uniquely
occupied by extensively metabolized drugs and the regions of low permeability rate that were
uniquely occupied by poorly metabolized drugs as a proportion of the extensively metabolized
drugs or poorly metabolized drugs in the dataset, respectively. On average, 60+30% of the
extensively metabolized drugs and 45+32% of poorly metabolized drugs occupied their
respective unique permeability rate regions (p < 0.01). We additionally considered the range of
permeability rates occupied by metabolized compounds or poorly metabolized compounds.
Metabolized compounds covered 75.9+56.3 x 10 cm/s on average, while poorly metabolized
compounds covered 24.6+24.7 x 10 cm/s on average (p < 0.0001), and the permeability rate
range metabolized drugs covered was greater than the range of poorly metabolized compounds

for every dataset.

Lipophilicity

Extensively metabolized compounds are significantly more lipophilic than poorly
metabolized compounds (Figure 3-3). However, when poorly metabolized compounds are
separated into major routes of elimination, there is no significant difference in mLogP or cLogP
calculated in VolSurf+ between extensively metabolized compounds and compounds primarily
eliminated as unchanged drug in the bile, although 21% of the metabolized compounds have a
mLogP greater than the maximum mLogP (4.02) of biliarily eliminated compounds. There was a
significant difference in the cLogP calculated by ADMET Predictor for extensively metabolized
and biliarily eliminated drugs, but the area under the ROC curve = 0.63. The Pearson

correlation coefficient of permeability rate to mLogP is 0.48+0.26.
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Figure 3-3. The Measured and Calculated Logarithms of Partition Coefficients by Major

Route of Drug Elimination.

DISCUSSION

As our lab has proposed, in vitro measurements of permeability rate can predict when

extensive metabolism is a major route of drug elimination. Varma et al.(139) demonstrated this

principle while developing a provisional BDDCS classification based on in vifro measures. As

permeability rate measurements between laboratories are notoriously variable, we wanted to

extend the analysis to many datasets amongst Caco-2 and MDCK cell lines and PAMPA. We

used BDDCS classes previously curated from clinical data by Benet et al.(54) to represent the

extent of metabolism. In vitro permeability rate is differentiable among extensively and poorly

metabolized compounds as demonstrated by the AUCs > 0.8 shown in Table 3-1, and this
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differentiability persists when poorly metabolized drugs are deconstructed into their major routes
of elimination of parent drug. As expected, in vitro permeability rate does not discriminate
between the major elimination routes of poorly metabolized compounds. In silico permeability
rate predictions can provide a prediction of the extent of metabolism quickly, but with less
differentiability (Table 3-1).

We proposed that an alternative compound to metoprolol could serve as a permeability
rate reference compound, such that drugs with permeability rates greater than the selected
standard are predicted to be extensively metabolized in humans, while lower permeability rate
drugs are predicted to be eliminated primarily unchanged in the bile or the urine. As a
conservative reference, metoprolol is ineffective at identifying many metabolized compounds by
their permeability rate. While compounds with permeability rates greater than metoprolol are
almost certainly metabolized, using metoprolol's permeability rate as a standard in Caco-2 or
MDCK studies predicts many extensively metabolized drugs as eliminated as unchanged drug,
as indicated by low sensitivity values of 28% in MDCK and 52% in Caco-2 (Table 3-2a). Our
goal in choosing a reference standard, then, was to increase the negative predictive value, or
the proportion of compounds with a low permeability rate relative to the reference that are truly
poorly metabolized, while preserving the positive predictive value as much as possible. Our
analysis indicated that labetalol or zidovudine might best serve the purpose of a single
permeability discriminator for Caco-2 or MDCK cells, and theophylline might best serve the
purpose of a single permeability discriminator for PAMPA. Although labetalol was not selected
as the optimal standard reference compound for permeability rate studies in MDCK cells, it met
the criteria for a standard reference compound for both MDCK and Caco-2 cell lines. Labetalol
has previously been proposed as an alternative permeability rate standard(87), and has been
used as a reference standard in studies to predict BCS class(176,182), but we are unaware of
any studies that have rigorously tested its performance in multiple laboratories as a standard

predictor of metabolism. In Caco-2 and MDCK cells, using labetalol, zidovudine,
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dexamethasone, or methylprednisolone as a reference compound results in correctly identifying
a higher proportion of extensively metabolized drugs (an increase in sensitivity) than metoprolol,
while increasing the negative predictive value, the confidence that a poorly permeable drug is
poorly metabolized. The standards appear transferable between Caco-2 and MDCK cells, while
these standards perform poorly for PAMPA. This difference is understandable as Caco-2 and
MDCK are biological membranes that include uptake and efflux transporters and tight junctions
for paracellular transport. However, there is little difference in predictive performance of the cell
lines or PAMPA (Table 3-2a), assuming that the experimenter selects a standard substrate
recommended for that system.

Additionally, there are a number of acceptable standards for the cell lines (Caco-2,
MDCK). While the methodology we used provides confidence that these standards are
preferable alternatives to metoprolol, discrepancies exist in the drugs used to develop each
dataset. Therefore, this list is not exhaustive, and while we have provided a ranking of
performance, any of the standards listed may be acceptable choices.

Metoprolol was selected naively as an alternative to theophylline in PAMPA, but remains
a more conservative reference compound. While using less stringent reference compounds
compared to metoprolol penalizes the positive predictive value of high permeability rate drugs
and the specificity, the proportion of poorly metabolized drugs correctly identified, they still result
in > 90% positive predictive value and > 80% specificity for the selection cell line (Table 3-2a).

Including additional reference compounds provides more informative predictions. When
the permeability rate of drugs was broken into 4 sectors with permeability rate relative to high
(metoprolol), intermediate (labetalol, zidovudine, dexamethasone, or methylprednisolone), and
low (chlorothiazide) standards, an interesting pattern emerged. We noted that in many cases
(14/18 combinations of reference standard with in vitro method) a single segregation by
intermediate permeability references resulted in greater specificities than sensitivities

(Table 3-2a). While only around 50% of the low-intermediate permeability rate drugs were
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correctly identified as poorly metabolized (NPV), greater than 85% of the high-intermediate
permeability rate drugs are extensively metabolized (PPV) (Table 3-3). In addition, a smaller
proportion of poorly metabolized drugs populated the low permeability rate regions unique to
poorly metabolized drugs than uniquely highly metabolized dugs populated the high
permeability regions. Finally, the range of permeability rates for metabolized compounds vastly
exceeds the range observed for non-metabolized drugs. These may indicate that while highly
permeable drugs require metabolic elimination, as we have hypothesized(87), high permeability
rate may not be mandatory for drug metabolism. Rather, a drug with a low-intermediate
permeability rate is equally likely to be eliminated unchanged or by metabolism. As new
molecular entities follow a similar distribution of extent of metabolism (extensive or poor
metabolism)(87), we expect that in vitro permeability rate will be an indicator of the extent of the
metabolism for future compounds.

When predicting the major route of elimination of orally administered drugs with a two-
tier approach, the uncertainty in each tier is naturally multiplicative, and therefore excellent
results (> 80% accuracy) are difficult to obtain. We were able to obtain accuracy > 79% in all
three datasets when indinavir was used as the reference compound (Table 3-4). However,
accuracy is skewed by the success of predicting the highly populated extensively metabolized
drugs, while zidovudine and dexamethasone provide more balanced accuracy across the major
routes of elimination. On the other hand, indinavir provides well-balanced and higher predictive
values, and may be a useful reference compound. It was only present in the Varma (MDCK),
Skolnik (Caco-2), and PhamThe (Caco-2) datasets and therefore did not meet the minimum
number of datasets per cell line as a selection criteria for standard reference compounds. It
would therefore be useful to consider indinavir as a reference compound in future studies.

While the previously defined model(23) almost always correctly assigns renally and
biliarily eliminated drugs, extensively metabolized drugs invade low-permeability rate

compounds. For this reason, there may be little value in assessing metabolic clearance of low-
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permeability rate compounds in vitro. Renally cleared compounds are unlikely to be metabolized
in vitro, while biliarily eliminated compounds may be metabolized in microsomes(23) and may
be confounded with lower-permeability rate metabolized compounds. By utilizing a high,
intermediate, and low standard, regions of uncertainty can be better characterized, and regions
of high predictive value can be prioritized. Therefore, if the permeability rate is greater than
metoprolol, it is safe to assume that the drug is extensively metabolized. If the drug has a very
low permeability, i.e. less than chlorothiazide, the drug is very likely poorly metabolized, and the
in silico model predicting biliary elimination may be applied. In the three datasets considered, all
of the low permeability rate compounds predicted as renally eliminated were correctly predicted.
When the compound exhibits a permeability rate between chlorothiazide and metoprolol, the
intermediate “best standard” can predict the extent of metabolism, followed by the in silico
model for a prediction, although in vivo experiments may still be required, particularly if the drug
is predicted to be eliminated in the bile. This is, however, still an improvement in predicting
which compounds are likely to be eliminated as unchanged drug in the bile.

Two-tier performance was evaluated with permeability rate in reference to the standard
with the highest average sensitivity and specificity among all datasets in the cell line containing
the standard. Therefore, zidovudine was selected as the MDCK cell line standard for the Varma
dataset. Labetalol was the highest ranking permeability rate standard for Caco-2, but was not
available in the Skolnik dataset, so the second highest ranking standard, dexamethasone, was
selected. We selected dexamethasone as the standard reference compound for the Pham-The
dataset as the permeability rate of labetalol was greater than that of metoprolol. This only
occurred in one other dataset (Zhu), of the eight datasets, including the Pham-The dataset. It is
important to note that the permeability rates given in the Pham-The dataset are an average from
several datasets and therefore do not meet our initial selection criteria and may not be
representative of permeability rates in a single lab. Additionally, the Zhu dataset(183) had the

greatest percentage of outliers in its dataset (13% of the orally administered drugs).
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While threshold independent evaluations of in silico permeability rate predictions
indicated that the VS+ CACO2 model could significantly differentiate extensively from poorly
metabolized compounds and the MDCK model approached significant differentiability, the loss
of differentiability compared to in vitro methods may contribute to the poor sensitivity, specificity
and predictive values in the two-tier approach compared to in vitro methods (Table 3-4). We
therefore recommend that initial permeability rate studies be conducted in vitro.

As we have recognized previously(23), molecular weight is an inadequate predictor of
biliary excretion, as biliarily eliminated drugs encompass only 12% of orally administered drugs
with MW > 380 Da and 20% of orally administered drugs with MW > 475 Da and this number
drops significantly when including non-orally administered drugs. However, combining in vitro
permeability rate and the logistic regression model vastly improves the success rate, achieving
up to 67% predictability for biliary excretion being the major route of elimination when comparing
permeability rate to a conservative reference (i.e. chlorothiazide).

Despite the success of this two-tier approach, we noted that there were BDDCS class 1
and 2 drugs with reported very low permeability rates (< chlorothiazide), and BDDCS class 3
and 4 drugs with reported very high permeability rates (> metoprolol). We therefore reviewed
these compounds for discrepencies between the listed BDDCS classes, and conflicting
literature (Table 3-5). This table indicates the number of times the compound was an outlier per
the number of datasets containing the compound and the reference compound (cholorothiazide
in part A, metoprolol is part B). Notably, in the BDDCS classification publication, extensively
metabolized compounds were not limited to compounds metabolized by metabolic processes
subsequent to absorption, such as cytochrome P450 or phase Il metabolism, as was initially
proposed(48,55), but was extended to all extensively metabolized drugs (= 70% metabolism).
Therefore, drugs such as sulfasalazine, which is metabolized by bacteria in the gut, may not
follow the high permeability/ extensive metabolism relationship. No extensively metabolized

drugs appear to have been misclassified by BDDCS. Of the high permeability rate poorly
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metabolized drugs, there were five BDDCS class 3 and 4 compounds (clonidine, flecainide,
metoclopramide, phenazopyridine, and pindolol) that may have been misclassified, and may be
extensively metabolized. Interestingly, 4/5 of these compounds (all except metoclopramide)
were listed with intermediate fractions excreted unchanged in the urine (35 < f, < 65), which may
indicate multiple elimination routes and variable reports regarding the major elimination route.
Other notes reported in Table 3-5 indicate additional possibilities of incorrect prediction due to
permeability rate. We note that many of the outlier compounds have a low frequency of
incorrect prediction based on permeability rate (e.g. atenolol is only an outlier in 1/16 datasets),
and subsequent evaluations of permeability rate may indicate that the compound in question is
correctly identified by permeability rate. More than half of the outlier drugs (10/19) were found in

the Zhu et al. dataset(183).

Lipophilicity

Using both measured and calculated LogPs, we have shown that while extensively
metabolized drugs are more lipophilic than poorly metabolized drugs, this relationship
deteriorates by considering biliarily eliminated drugs as a subgroup of the poorly metabolized
drugs (Figure 3-3). While there is a significant difference in the LogP calculated by ADMET
Predictor of extensively metabolized versus biliarily eliminated compounds, the area under the
ROC curve = 0.63, indicating no differentiability. Indeed, for the measured LogP or the VolSurf+
calculated LogPs (where the nonpolar phase is either octanol or cyclohexane), there is no
significant difference in lipophilicity between metabolized and biliarily eliminated drugs, and
biliarily eliminated drugs are significantly more lipophilic than renally eliminated drugs.
Additionally, some groups have found no difference between the lipophilicity of biliarily and non-
biliarily eliminated compounds(37,42), while others found that biliarily eliminated compounds are
more hydrophilic(38,39). Uncontested, urinary excretion is negatively correlated with

lipophilicity(204). High lipophilicity is often considered a surrogate for high passive membrane
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permeability, and it has been observed that highly lipophilic compounds have high affinity for
metabolizing enzymes/are extensively metabolized by cytochrome P450(16,204,205) and
UGTs(206). We found a modest correlation between the measured LogP and in vitro
permeability rates, though with a large standard deviation. The active sites of CYP enzymes are
localized on the cytosolic side of the endoplasmic reticulum, while the active site of UGT
enzymes are localized on the luminal side of the endoplasmic reticulum(207). The binding
region of P-glycoprotein (P-gp), a transporter responsible for biliary efflux, is located in the
transmembrane region(208). Increased lipophilicity has been hypothesized to be required for
successful permeation across membranes encasing UGT enzymes within the endoplasmic
reticulum(206), or P-gp within the plasma membrane(38). However, due to the localization of
CYP enzymes and other transporters, it is unlikely that increased lipophilicity in metabolism and
biliary excretion is due to enzyme or transporter access across a membrane. The presumed
relationship between permeability rate and lipophilicity might indicate that highly lipophilic drugs
are metabolized due to reabsorption from the bile or urine. However, since biliarily eliminated
compounds are highly lipophilic, it is more likely that lipophilicity, while slightly correlated with
permeability, actually represents increased hydrophobic interactions that allow metabolized
compounds and biliarily eliminated compounds to interact with metabolizing enzymes(204) and
transporters(42), respectively. Considering the large variability in the relationship between
mLogP and in vitro permeability rates, as well as overlapping lipophilicities of metabolized and
biliarily eliminated compounds, lipophilicity is not an appropriate predictor of permeability rate

and/or extent of metabolism.

CONCLUSIONS
In vitro permeability rate of compounds compared to reference compounds such as
labetalol, dexamethasone, or methylprednisolone are acceptable predictors of the extent of

metabolism in Caco-2 cells; zidovudine or labetalol are acceptable predictors of the extent of
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metabolism in MDCK cells; and theophylline or metoprolol serve as appropriate references for
PAMPA. Highly permeable drugs, especially those with permeability rates greater than
metoprolol are very likely to require metabolic elimination, and while extensively metabolized
drugs tend to be more highly permeable than poorly metabolized drugs, high permeability rate
may not be required for a compound to be metabolized. The major route of elimination of a drug
intended for oral administration may be predicted using a two-tier approach by predicting extent
of metabolism using permeability rate, and parent drug excretion of poorly metabolized drugs
with a logistic regression model incorporating calculated metabolic stability and polarizability.
This two-tier approach correctly predicts 72+9%, 49£10%, and 66+7% of extensively
metabolized, biliarily eliminated, and renally eliminated parent drugs, respectively when
permeability rates are predicted in silico, but 74+7%, 85+2%, and 73+8% of extensively
metabolized, biliarily eliminated, and renally eliminated parent drugs, respectively when
permeability studies are carried out in vitro. Thus, in silico permeability rates can predict
extensively metabolized and renally eliminated parent drugs reasonably well, but to have
confidence in predicting biliary excretion of an NME, a simple in vitro permeability study appears

necessary.
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CHAPTER 4. PREDICTING BDDCS CLASS USING IN SiLico METHODS

ABSTRACT

BDDCS currently relies on clinical measures of metabolism and in vitro measures of
solubility to categorize drugs. The goal of our study was to develop an in silico model predicting
BDDCS class. While an in vitro predictive model of BDDCS has been established, an accurate
in silico model would minimize laboratory requirements and could help in its implementation in
early-phase development. Here, we demonstrate the ability of commercially available models to
predict the extent of metabolism, using in silico predictions of permeability rate, and the
solubility class, using in silico predictions of dose number. The GastroPlus™ Pz model is able
to differentiate extensively from poorly metabolized drugs as demonstrated by an area under the
receiver operating characteristic curve (ROC AUC) = 0.80 * 0.04, while the GastroPlus™ D,
model is able to differentiate highly from poorly soluble drugs with a ROC AUC = 0.87 £ 0.03.
We additionally show that a dose of 100 mg adequately predicts BDDCS class, independent of
highest dosage strength. By combining P« and D, predictions, 69.7%, 70.5%, 50.8%, and
19.8% of drugs predicted as class 1, 2, 3, or 4, respectively, were true members of each class.
86% of the drugs predicted to be class 1 and 95% of the drugs predicted to be class 2 are
extensively metabolized (class 1 or 2). While 87% of the drugs predicted to be class 3 are highly
soluble, 36% of the drugs predicted to be class 3 are actually extensively metabolized, class 1
drugs. Drugs that are predicted to be extensively metabolized are unlikely to be poorly
metabolized and may not need to be evaluated as substrates for absorptive transporters in the
gut. Drugs that are predicted in silico to be poorly metabolized, highly soluble (class 3) are
unlikely to be poorly soluble and may not require further solubility characterization though in
vitro permeability should still be assessed to predict the impact of transporters and/or enzymes,
as many of the drugs predicted as class 3 are extensively metabolized. Drugs predicted to have

a low solubility and permeability rate (i.e. BDDCS class 4) are unreliable and should be further
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investigated in vitro or in vivo. While in silico predictions of BDDCS class cannot supplant in

vitro predictions, we outline valuable insights that arise from in silico predictions.

INTRODUCTION

BDDCS was developed based on marketed compounds and has demonstrated
substantial utility for understanding the effects of transporters and metabolizing enzymes for
these compounds. Ideally, this system can be applied to drugs in development in order to
predict which transporter and metabolizing enzyme effects will be relevant in the clinic. These
predictions may be useful in limiting unnecessary experiments, which may decrease
development time and cost, benefitting both the consumer and the pharmaceutical company.
However, the current classification system depends upon clinical metabolism data, which
generally correlates with in vitro measures of permeability, as well as in vitro solubility
measurements. Scientists must also know the highest dose strength to classify solubility, which
is unknown until after clinical studies.

Wu and Benet observed that compounds that are extensively metabolized are also
highly permeable in humans(48). We and others have shown that in vitro permeability rate
predicts the extent of metabolism well, as outlined in the previous chapter(17,139). This can be
a useful tool in predicting the extent of metabolism as a component of BDDCS class using in
vitro or in silico methods.

Companies such as Pfizer have already made great strides in predicting BDDCS class
prior to human studies. Varma et al.(139) have shown that BDDCS class can be predicted well
using in vitro apparent permeability rate as measured in MDCK-LE cells at pH 6.5 for acids and
pH 7.4 for bases and solubility measured at pH 1.2 in PBS for acidic compounds and in FassIF
for all other compounds. They used an internally developed permeability rate cut-off of 5x10®
cm/s, above which, compounds were predicted to be extensively metabolized, and below which,

compounds were predicted as poorly metabolized. Dose strength is generally determined prior
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to and during phase | trials. This makes it difficult to accurately predict the dose number of a
drug. This group proposed a solubility cut-off of 200 pg/mL, which corresponds to a 50 mg dose
being entirely soluble in 250 mL of water. This approach correctly predicted 84% of the
compounds in their dataset, specifically 83%, 83%, 88%, and 67% of class 1, 2, 3, and 4 drugs,
respectively. Additionally, over 90% of the drugs predicted as class 1 or class 2 actually
belonged to those classes and over 80% of the drugs predicted to be class 3 were actually class
3, while 40% of the drugs predicted to be class 4 actually were class 4. The small number of
drugs that actually are class 4 may have contributed to the poor predictions of class 4
molecules.

Pharmaceutical companies can universally apply this approach, yet slight modifications
will be required. Since measured permeability rate is extremely variable between
laboratories(165) and each laboratory may choose a different method of permeability rate
evaluation, each laboratory will need to develop a permeability rate standard to predict the
extent of metabolism. We have investigated compounds that perform well as standards
depending on the method of investigation (i.e. labetalol for Caco-2, zidovudine for MDCK, or
theophylline for PAMPA)(17). Additionally, each company will need to decide upon a predicted
highest dose strength prior to assigning a solubility class. As mentioned above, Varma et al.
decided to use 50 mg. Here we analyze different dose strengths as an initial predictor of dose in
order to predict solubility.

To ease the time and cost of these predictions during development, an in silico approach
is preferable. There have been at least two attempts to predict BDDCS class in silico. In 2007,
Khandelwal et al.(209) developed models using machine learning methods including recursive
partitioning, random forest, and support vector machines. They used molecular features to
assign drugs to one of the four BDDCS classes, predicting 33.3% correct overall. In 2012, using
the extended dataset published by Benet ef al.(54), Broccatelli et al.(210) used a binary

approach to predict the solubility and the extent of metabolism of the drugs before making a
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class prediction. Solubility was predicted using Naive Bayes, k-nearest neighbor, and support
vector machine models, where the solubility class was assigned using a consensus model,
which predicted the class based on how it was predicted in a majority of the models. This model
was 77% accurate. The extent of metabolism was predicted from a consensus model of a Naive
Bayes and two support vector machine models. This model was 79% accurate. When
combining the solubility and extent of metabolism models to predict BDDCS class, however, this
approach was 55% accurate.

We selected a similar approach as Broccatelli et al.(210), predicting extent of
metabolism and solubility separately, but we decided to use validated commercially available
models that predict in vitro permeability rate, which serves as a surrogate for the extent of
metabolism and that predict solubility and its derived parameter, dose number. We have shown
that we can reliably predict the extent of metabolism using in vitro methods(17), but an in vitro
provisional classification system has already been successfully developed by Varma et al.(139).
We therefore set out to use a previously developed, commercially available in silico model to
predict the extent of metabolism. Since we know that in vitro permeability rate methods can
predict the extent of metabolism well, we expected that in silico permeability rate methods may
also be able to predict the extent of metabolism. We therefore considered the GastroPlus™
effective permeability rate model (GP P¢) as a predictor of the extent of metabolism (BDDCS
classes 1 and 2 versus BDDCS classes 3 and 4). Additionally, we evaluated the GastroPlus™

dose number model (GP D,) as a predictor of the solubility classification.

METHODS

Predicting Extent of Metabolism
We assigned extensively metabolized compounds a 1 as the positive class and poorly

metabolized compounds a 0 as the negative class. We evaluated how well the GP P
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predictions were segregated between extensively and poorly metabolized compounds, with the
expectation that poorly metabolized compounds would have low predicted in silico permeability
rates and that extensively metabolized compounds would have high predicted in silico
permeability rates, using a receiver operating characteristic curve (ROC). When the area under
the ROC curve (AUC) was greater than 0.8, the permeability rate model was considered
capable of segregating extensively from poorly metabolized compounds.

The receiver operating characteristic curve is a method of determining how well a
continuous feature predicts a binary classification outcome. In this case, the continuous feature
is in silico permeability rate, while the binary classification outcome is extent of metabolism
(extensive versus poor). The continuous feature is rank-ordered and the true positive rate
(sensitivity) is plotted against the false positive rate, which is equal to 1-true negative rate
(specificity) at each continuous value, resulting in high AUCs (> 0.8) when there is good
segregation between the continuous values allotted to the classifications, or low AUCs (0.5-0.8)
when the continuous values are not well segregated between the classifications. An AUC of 0.5
indicates complete integration of the continuous values between the segregated classes where
essentially every other rank-ordered value belongs to one class. We further investigated specific

performance measures at a threshold that would maximize the average between sensitivity and

specificity.
. Sensitivity: the percent of highly metabolized compounds that were correctly
assigned an extensive metabolism classification by high GP P
. Specificity: the percent of poorly metabolized compounds that were correctly
assigned a poor metabolism classification by low GP P
. Positive Predictive Value: the percent of high GP Pt compounds (thus

predicted to be extensively metabolized) that are extensively metabolized
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. Negative Predictive Value: the percent of low GP Pz compounds (thus
predicted to be poorly metabolized) that are poorly metabolized

. Accuracy: the percent of all compounds that were correctly assigned their
metabolism class

. The average between sensitivity and specificity, and the average between

positive and negative predictive value were also evaluated.

Predicting Solubility
We evaluated the dose number predictions in GastroPlus™ (GP D,) for their ability to
predict the actual dose number and solubility classification. We used known doses for the
predictions, and when doses were unknown, we used 100 mg, which is the recommended dose
prediction by the program, and is the dose that we selected for predictions based on dose
analysis. The ability of GP D, to predict solubility was evaluated with ROC curves. Because a
low dose number (< 1) indicates a highly soluble compound, while a high dose number (> 1)
indicates a poorly soluble compound, when we evaluated predicted dose number, we classified
poorly soluble compounds as the positive class to generate the ROC plot, but calculated the
performance parameters by assigning highly soluble compounds the positive class. We further
investigated specific performance measures at a threshold that would maximize the average
between sensitivity and specificity.
. Sensitivity: the percent of highly soluble compounds that were correctly
assigned a high solubility classification
. Specificity: the percent of poorly soluble compounds that were correctly
assigned a poor solubility classification
. Positive Predictive Value: the percent of compounds assigned a high solubility

classification (by a low dose number) that are truly highly soluble
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. Negative Predictive Value: the percent of compounds assigned a poor solubility
classification (by a high dose number) that are truly poorly soluble

. Accuracy: the percent of all compounds that were correctly assigned their
solubility class

. The average between sensitivity and specificity, and the average between

positive and negative predictive value were also evaluated.

Evaluating Measured Solubility as an Indicator of FDA Solubility
Measured solubility as reported by Benet et al.(54) or Hosey et al.(59) was compared
between BDDCS classes using Kruskal-Wallace one-way analysis of variance and comparing

each class against one another with Dunn’s multiple comparison test.

Evaluating Dose

We evaluated how simulated doses of 50, 75, 100, and 200 mg would affect the
solubility classification of orally administered drugs. We first calculated what the dose number
would be given a known experimentally measured solubility using the following equation:

Highest Dose Strength (mg)

Dose Number = mg
250 mL x Minimum Solubility (m)

We then evaluated the performance of solubility assignment at various simulated doses
compared to actual solubility assignment. When dose number < 1, the drug is considered highly
soluble, and when dose number > 1, the drug is considered poorly soluble. Performance of the
simulated dose was evaluated with the following:

. Sensitivity: the percent of highly soluble compounds that were correctly

assigned a high solubility classification at the simulated dose

. Specificity: the percent of poorly soluble compounds that were correctly

assigned a poor solubility classification at the simulated dose
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. Positive Predictive Value: the percent of compounds assigned a high solubility
classification at the simulated dose that are truly highly soluble

. Negative Predictive Value: the percent of compounds assigned a poor solubility
classification at the simulated dose that are truly poorly soluble

. Accuracy: the percent of all compounds that were correctly assigned their
solubility class

. ROC AUC, the average between sensitivity and specificity, and the average
between positive and negative predictive value were also evaluated. The
measured solubility at which the greatest average between sensitivity and
specificity was obtained and associated with the dose that would determine the
boundary between extensively and poorly metabolized compounds (Dose
number = 1) using the dose number equation given above.

We additionally evaluated the accuracy of predicting each class and the predictive value

of each class, assuming the extent of metabolism was already known.

Predicting BDDCS Class

The BDDCS Class was predicted using the Pz model to predict the extent of
metabolism with the Predicted Dose Number model from GastroPlus™ to predict the solubility
class. The thresholds that delineate the classifications were selected using optimal thresholds
based on maximum averages between sensitivity and specificity. Accuracy and predictive

values of each class were calculated.
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RESULTS

Evaluating Measured Solubility as an Indicator of FDA Solubility
Significant differences were found between the measured solubility of high FDA solubility

(classes 1 and 3) and low FDA solubility (classes 2 and 4) drugs (Figure 4-1).
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Figure 4-1. Distribution of Measured Solubility Between BDDCS Classes 1-4.

Additionally, a significant difference was observed between classes 1 and 3 (p < 0.05).
The ROC AUC between class 1 and 3 is 0.61. The solubility boundary conditions of classes 1
and 3 versus 2 and 4 are detailed in Table 4-1. This indicates what dose would be required

under certain conditions to change the FDA solubility classification of a drug.
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Table 4-1. Boundary Conditions of Currently Classified Drugs

BDDCS Boundary Solubility

Dosing Condition

Class2o0or4 2.5 mg/mL maximum

Class 10or3 0.002 mg/mL minimum

If solubility is > 2.5 mg/mL, the drug will only
be poorly soluble if requiring a dose > 625 mg
If solubility is < 0.002 mg/mL, the dose must
be < 0.5 mg to be a high solubility drug

Evaluating Dose

Class 4 drugs had significantly higher

doses than each of the other classes for orally

administered drugs as seen in Figure 4-2. The dose of class 4 drugs was also significantly

higher than class 1 and 2 drug for intravenously administered drugs, and had a higher mean

and median dose value than class 3 drugs, al

Alternatively, class 1 drugs had the lowest do

though the difference was insignificant.

ses for orally administered and intravenously

administered drugs, although there was no significant difference in the doses of class 1 and 2

intravenously administered drugs.
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Figure 4-2. Highest Dosage Strength of Orally and Non-orally Administered Compounds
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The Effect of Dose Changes on Dose Number
Table 4-2 shows how changing a dose (from 50, 75, 100, or 200 mg) affects how well
the solubility class (1 and 3 versus 2 and 4) was predicted using the measured solubility and

with a theoretical dissolution volume of 250 mL.

Table 4-2. The Effect of Dose Changes on Dose Number

Performance Measure Dose (mg)

50 75 100 200
% of Highly Soluble Compounds Correct (Sensitivity) 0.87 0.84 0.82 0.77
% of Poorly Soluble Compounds Correct (Specificity) 0.78 0.84 0.89 0.97

% of Those Predicted to Be Highly Soluble Correct (PPV) 0.88 0.90 0.93 0.98
% of Those Predicted to Be Poorly Soluble Correct (NPV) 0.77 0.75 0.74 0.70

Average between Sensitivity and Specificity 0.83 0.84 0.86 0.87
Average between PPV and NPV 0.82 0.82 0.83 0.84
Accuracy 0.84 0.84 0.85 0.84
ROC AUC 0.82 0.84 0.85 0.87

Table 4-3 shows how changing the dose will affect the accuracy of the solubility class
predictions for classes 1-4 and the predictive value assuming the extent of metabolism is
known. For example, the predictive value of drugs predicted to be class 1 when the dose is 50

mg is the percentage of class 1 and 2 drugs having dose number < 1 that belong to class 1.

122

www.manaraa.com



UMOUY SI WSI|0ge}aW JO JUBIXa 8y} UBYM }081100 aJe Jey) suoljoipald Jo jusolad ay) sjuasaidal anjeA aAloIPald .x
9sop yoes 10} sse|o Ajjignjos paubisse A|1081100 a1om eyl ssejo ay) ul spunodwod ayj Jo jusalad ay) sjussaidal Aoeinooy

290 ¥6°0 860 18°0 ¢l'0 /60 860 ¥.0 00¢

G9'0 6.0 €60 980 9.0 16°0 €60 080 00l

G9'0 €L0 16°0 /80 ..0 980 060 280 Gl

¢l'0 790 680 ¢6'0 8.0 280 /80 780 0%

anjeA oAnoIpald Aoeinddy  anjep aAldIpald Adelnddy  anjeA BAldIpald Adelnddy .oNneA aAlolIpald ,Aoeindoy  (Bw) esoq
¥ sse|n € sse|n Z sse|n | sse|D

sse|) SHaag yoed 4oj pajewnjsy ade saso( SNOLIRA USYAL SOINSES|\ 99UBWIOMAd "S- d|gel

123

www.manaraa.com



The ROC AUC of solubility as a predictor of solubility class when dose was not
estimated was 0.93. The optimal average between sensitivity and specificity was found at 0.4

mg/mL, which corresponds to a 100 mg dose to achieve a dose number = 1.

Using In Silico Models to Predict the Extent of Metabolism and Solubility Class

Figure 4-3 shows the ROC plots and performance measures for the GP P model as a
predictor of the extent of metabolism and the GP D, as a predictor for solubility class. Since
AUC values were = 0.80, each of these models significantly discriminated their predicted
classes. A threshold of 1.72 x 10* cm/s resulted in the highest average between sensitivity and
specificity for the GP Ptz model, while a threshold of 1.11 resulted in the highest average
between sensitivity and specificity for the GP D, model. The performance measures are listed at

these thresholds on Figure 4-3.
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Figure 4-3. Receiver Operating Characteristic Curves of GastroPlus™ Predicted Dose

Number and Effective Permeability.

Predicting BDDCS Class
Figure 4-4 depicts the predicted P¢s versus the predicted dose number, as calculated in
GastroPlus™ for the drugs in our dataset. The results of these predictions are outlined in

Table 4-4. Table 4-5 shows how drugs were predicted compared to their actual class.
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classified according to their predicted permeability rate and predicted dose number. Compounds
in the green box are predicted as class 1, yellow as class 2, blue as class 3, and red as class 4.

The legend shows the actual class of each drug.

Table 4-4. Performance of BDDCS In Silico Predictions

BDDCS Class Predictive Value  Accuracy
1 69.7 541
2 70.5 57.8
3 50.8 69.3
4 19.8 45.2
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Table 4-5. Confusion Matrix of BDDCS Predictions

Actual Predicted
1 2 3 4
1 152 46 69 14
2 36 134 13 49
3 27 2 97 14
4 3 8 12 19

DISCUSSION

BDDCS is a powerful system that predicts when transporters are clinically irrelevant. We
expect that almost all drugs are substrates for some transporters, and that in vitro experiments
will often predict that a drug is a substrate for a transporter. However, we are unaware of any
examples of highly soluble, extensively metabolized class 1 drugs that exhibit clinically relevant
transporter effects. That is, the disposition of the drug is independent of the function of
transporters. This is extremely powerful in predicting potential drug-drug interactions and
understanding barriers to organ access. For instance, Broccatelli et al.(108) have shown that
while efflux transporters can effectively decrease the central nervous system concentrations of
class 2 drugs and uptake transporters and efflux transporters affect central nervous system
access for class 3 and 4 drugs, class 1 drugs have no barriers to central nervous system
access. Since transporters can be so important in mediating systemic and organ drug exposure,
they must be evaluated during development. However, successful BDDCS class prediction,
particularly of class 1 drugs, could be used to reduce the time and cost of development by
eliminating unnecessary transporter studies. Alternatively, it can be used to inform which
transporter studies may be necessary for class 2, 3, and 4 drugs and alert the developer to
possible transporter interactions.

While BDDCS classes have been successfully predicted in vitro, there are currently no in
silico predictive methods that are sensitive enough to apply during drug development.

Therefore, we examined the potential to predict BDDCS class using commercially available in
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silico methodology. We used predicted dose number from GastroPlus™ to predict solubility and
predicted Py as a surrogate predictor of the extent of metabolism.

During early development, it is advantageous to predict transporter effects, yet dose is
frequently unknown until clinical studies. Varma et al.(139) have suggested utilizing a 50 mg
dose (equivalent to a solubility of 200 ug/mL at a dose number = 1) as an initial prediction to
predict BDDCS class. We analyzed 4 doses to determine their effect on predicting BDDCS
class when solubility is known. The performance is relatively stable across the dosages. This is
likely because there is a significant difference in measured solubility independent of dose
(Figure 4-1) and thus only large changes in dose will have an effect on the dose number of
many drugs. Currently, transporter studies are carried out for all drugs. Because BDDCS
predictions could potentially be used to eliminate transporter studies, which are unnecessary for
class 1 drugs, but are important to ensure the safety and efficacy of other drugs, we wished to
be conservative with the false prediction rate of class 1 drugs. At 100 mg, only 7% of the
compounds that are predicted to be class 1 when the extent of metabolism is known to be
extensive are false positives, while 80% of the class 1 compounds were still correctly predicted
when 100 mg was used as the dose (Table 4-3). When we evaluated how measured solubility is
segregated between classes 1 and 3 versus classes 2 and 4 using ROC analysis, we found that
a dose of 100 mg maximized the average between sensitivity (the percent of class 1 and 3
drugs correctly predicted by measured solubility alone) and specificity (the percent of class 2
and 4 drugs correctly predicted by measured solubility alone). Thus, we selected 100 mg as an

estimated dose when dose is unknown.

Predicting BDDCS Class
While GP D, predicts solubility class well and GP P predicts the extent of metabolism

well (Figure 4-2), combining these to predict BDDCS class results in poor predictability and
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accuracy for each class (Table 4-4). However, by analyzing where the errors occurred, these
predictions may still be useful.

Of class 1, 2, 3, or 4 drugs, 95%, 94%, 99%, and 93% are correctly predicted by at least
one property, respectively. Additionally, 90% of the drugs that are predicted as extensively
metabolized class 1 or 2 drugs by a high in silico P actually are extensively metabolized
(Table 4-5). Since class 1 and 2 drugs do not require gut uptake transporters for absorption and
are not clinically relevant substrates of them, it is unlikely that drugs predicted to be class 1 or 2
will need to be evaluated for gut uptake. Of the drugs predicted to be class 3, 87% are highly
soluble (actually class 1 or class 3), but 36% of the drugs predicted to be class 3 are extensively
metabolized. Since such a large proportion of these drugs are actually extensively metabolized,
it may be advantageous to carry out in vitro permeability rate studies to predict the extent of
metabolism and potentially eliminate unnecessary transporter studies, if the drug is indeed a
class 1 drug. Solubility characterization, however, is likely unnecessary at this stage. Finally,
since only 20% of the drugs predicted to be class 4 in silico are actually class 4 drugs, and only
40% predicted to be class 4 by in vitro measures are actually class 4, a BDDCS classification
may only be assigned to these drugs after clinical studies and dose selection.

While using in silico methods to predict BDDCS class may not predict the exact BDDCS
class well, we have analyzed the data with respect to how predictions may influence
generalized transporter studies. More than 70% of drugs predicted as class 2, 3, or 4 actually
belong to one of those classes. While class 2 drugs do not require gut uptake studies, but class
3 and 4 do, gut efflux studies, as well as hepatic and brain transporter studies are necessary for
all class 2, 3, and 4 drugs. Therefore, by carrying out transporter studies for drugs predicted to
be in classes 2, 3, or 4 by the in silico methodology outlined here, only 30% of the transporter
studies are ultimately unnecessary and “wasteful”. This is still better than needlessly testing all
class 1 drugs. Unfortunately, improving in silico predictability of class 1 drugs is necessary to

eliminate transporter studies for even drugs predicted to be class 1 since 30% of the drugs
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predicted to be class 1 are actually class 2, 3, or 4 drugs. This is problematic since, if
transporters were not evaluated, 30% of the drugs may have transporter effects that need to be
evaluated prior to human dosing.

In Figure 4-5, we show a chart that can be used to interpret which studies need to be
carried out when in silico predictions of certain classes are made. Additionally, uptake transport
studies should be conducted for drugs that are predicted to be class 3 after considering

permeability rate.

Figure 4-5. Interpreting Necessary Further Studies Given an In Silico BDDCS Prediction.

Alternative Methods
We have envisioned several other methods of predicting BDDCS class in silico. Data-

mining approaches that predict each of the four classes individually (a quartenary classification
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approach) such as support vector machines may be useful. However, our preliminary attempts
at this classification have been less successful than using the binary approach outlined here.
Alternatively, we could develop models that predict the [binary] extent of metabolism and the
continuous solubility, continuous dose number, or binary solubility. However, several attempts
have been made at predicting continuous solubility finding that continuous solubility is not useful
in predicting BDDCS class without knowing the dose. Therefore, predicting dose number or a
binary solubility classification would likely be the most effective remaining approaches.

Benet et al.(54) showed that in silico predictions of the minimum solubility of drugs over
the pH range 3-7.5 are well segregated between class 2 and 3 drugs, but are unexpectedly
similar when comparing class 1 and 4 drugs. Similarly, CLogP, serving as a permeability rate
surrogate, is able to differentiate between classes 2 and 3, but confounds classes 1 and 4.
These relatively simple in silico parameters are therefore able to predict when a drug is likely to
be class 2 or 3, but a drug having a more moderate LogP (0 < LogP < 2) or predicted minimum
solubility is unable to be accurately classified. Additionally, we have shown that there is no
significant difference in the measured or calculated LogP of extensively metabolized class 1 and
2 compounds and class 3 and 4 compounds primarily eliminated as unchanged drug in the bile,
although both are significantly higher than the LogP of renally eliminated compounds(17).
Therefore, LogP is an unreliable indicator of BDDCS class. While we continue to investigate
these confounding factors, currently the best prediction approach remains in vitro. These in vitro

measures can reasonably predict BDDCS class prior to in vivo studies.

CONCLUSIONS

BDDCS has been successfully applied to understand and predict the disposition of
currently marketed drugs. It could be applied with extensive utility prior to carrying out clinical
studies during development, but would require non-clinical information. In vitro approaches have

been successfully developed to predict the BDDCS class of new molecular entities, but in silico
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approaches thus far have limited predictive utility, although some information may be garnered

to direct transporter studies.
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CHAPTER 5. BDDCS PREDICTIONS, SELF-CORRECTING ASPECTS OF BDDCS
ASSIGNMENTS, BDDCS ASSIGNMENT CORRECTIONS, AND CLASSIFICATION FOR MORE

THAN 175 ADDITIONAL DRuGs'

ABSTRACT

The Biopharmaceutics Drug Disposition Classification System was developed in 2005 by
Wu and Benet as a tool to predict metabolizing enzyme and drug transporter effects on drug
disposition. The system was modified from the Biopharmaceutics Classification System and
classifies drugs according to their extent of metabolism and their water solubility. By 2010,
Benet et al. had classified over 900 drugs. In this chapter, we incorporate more than 175
additional drugs into the system and amend the classification of 13 drugs. We discuss further
applications of BDDCS, which include predicting toxicity and environmental impacts of drugs.
When predictions and classes are not aligned, the system detects an error and is able to self-
correct, generally indicating a problem with initial class assignment and/or measurements

determining such assignments.

INTRODUCTION

Pharmacokinetics and pharmacodynamics are mediated by drug transporters or passive
processes as well as potentially drug metabolizing enzymes. Drug transporters regulate the
ability of some drugs to be absorbed from the small intestine, where some drugs may be initially
metabolized. The activity and expression of transporters and metabolizing enzymes can
therefore affect the bioavailability of the drug, either independently or in concert with each
other(62). Drug transporters are expressed in a variety of tissues, including the liver and

kidney— the organs primarily responsible for drug elimination— and target tissues such as the

T Modified from Hosey CM, Chan R, Benet LZ. BDDCS predictions, self-correcting aspects of BDDCS assignments, BDDCS
assignment.corrections,.and.classification.for more than 175 additional drugs. AAPS J. 2016;18:251-60.
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brain and heart. The expression and activity of drug transporters can determine the degree to
which a drug can access organs, impacting on-target efficacy, off-target toxicity, or elimination.
Elimination can also be influenced by the activity and expression of metabolizing enzymes,
which are responsible for changing a drug into a usually more hydrophilic, water-soluble
metabolite that can be more easily eliminated in the bile or urine than the parent drug. Drug
transporters and metabolizing enzymes can therefore significantly impact the disposition of
drugs.

Understanding the disposition of drugs is crucial during drug development. Each major
dispositional process (absorption, distribution, metabolism, and elimination) impacts the safety
and efficacy of a drug. In turn, other drugs, endogenous substrates, pharmacogenomics, and
food can affect each of these processes. Drug interaction studies are a critical component of
clinical development. Since considering the impact of each transporter or metabolizing enzyme,
which can be expressed in multiple organs, is too slow and expensive, pharmaceutical scientists
have prioritized when interactions with transporters and enzymes are likely to be clinically
important(9,120)

Defining whether enzymes and transporters are clinically important can be further
simplified by considering only 2 properties of the drug in question: its extent of metabolism and
its solubility (Box 1). These features are straightforward to obtain. The extent of metabolism is
routinely obtained during phase | clinical trials, while solubility can be measured in a
laboratory(211). These two features are demarcated by high and low values, classifying drugs
into four categories. These classes are each associated with specific predictions regarding
which interactions may be a clinical concern. This predictive system is called the
Biopharmaceutics Drug Disposition Classification System. The Biopharmaceutics Drug
Disposition Classification System (BDDCS) was developed in 2005(48) after Wu and Benet
recognized that highly permeable compounds, as outlined by the Biopharmaceutics

Classification System (BCS) developed by Amidon et al.(49), were extensively metabolized,
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while poorly permeable drugs were poorly metabolized. We expect that the relationship between
a high permeability rate and a high extent of metabolism is a result of ready reabsorption of
highly permeable drugs from the bile or the kidney lumen. Indeed, Gustafson and Benet(161)
demonstrated that reabsorption of drugs from the bile is possible, while a recent study by Dave
and Morris(212) found that 82% of drugs that are reabsorbed from the kidney tubule were
BDDCS class 1 and 2 drugs. Analyzing a dataset published by Varma et al.(34) that included
whether a drug was reabsorbed, secreted, or passively filtered by the kidneys, 52% of the class
1 and 2 compounds were reabsorbed compared to 19% of the class 3 and 4 compounds, while
69% of class 3 and 4 compounds were secreted in the tubule compared to 37% of class 1 and 2

compounds.
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Box 1. BDDCS Predictions by Class

HDS (mg) / 250 mL
Minimum Solubility (mg/mL)

Dose Number =

High Solubi

Extensive Metabolism|
Poor Metabolism|

BDDCS Classification

lity (DN<1) Low Solubility (DN>1)
1 2

3

4

BDDCS Class

Predicted Effect Resulting From:

Class 1

Class 2

Class 3

Class 4

Inhibition (induction) of metabolizing
enzymes

Inhibition (induction) of intestinal
apical absorptive transporters

Inhibition (induction) of intestinal
apical efflux transporters

Inhibition (induction) of hepatic
basolateral absorptive transporters

Inhibition (induction) of hepatic
canlicular efflux transporters

Inhibition (induction) of hepatic
basolateral efflux transporters

Distribution to the central nervous
system

Inhibition (induction) of central

Inhibition (induction) of central
nervous system efflux transporters

[Predicted elimination]

High-fat meal*

Uremic toxins resulting from renal
failure

Decreased (increased)
metabolism; increased
(decreased) parent drug

exposure

No effect

Minimal effect

Minimal effect

No effect

Minimal effect

Exposure clinically
independent of transporter
substrate status at
therapeutic doses

No clinically relevant

nervous system absorptive transporters effect at therapeutic doses

No clinically relevant
effect at therapeutic doses

Primarily metabolism

No AUC effect

No transporter effect, but
possible increased
exposure due to enzyme

inhibition

Decreased (increased)
metabolism; increased
(decreased) parent
drug exposure

No effect

Reduced (increased)
metabolism; increased
(decreased) exposure

of parent drug

Reduced (increased)
metabolism; increased
(reduced) exposure of

parent drug

Increased (reduced)

metabolism; reduced

(increased) exposure
of parent drug

Increased (reduced)

metabolism; reduced

(increased) exposure
of parent drug

Exposure if non-
substrate for P-gp or
BCRP

Decreased (increased)
CNS exposure

Increased (decreased)
CNS exposure

Primarily metabolism

Increase AUC

May inhibit hepatic
uptake transporters,
resulting in increased
parent drug exposure
and decreased
metabolism, but also
may inhibit enzymes

Minimal effect

Reduced (increased)
exposure of parent
drug

Increased (decreased)
exposure of parent
drug

Reduced (increased)

biliary excretion and

increased (decreased)
exposure

Decreased (increased)
biliary excretion and
increased (decreased)
hepatic exposure of
parent drug

Reduced (increased)
exposure of parent
drug

Exposure if substrate

for uptake transporter

and non-substrate of
efflux transporter

Decreased (increased)
CNS exposure

Increased (decreased)
CNS exposure if a
substrate for uptake

transporters

Primarily eliminated
as unchanged drug in
the bile or the urine

Decrease AUC

May inhibit hepatic
uptake transporters
and reduce biliary
excretion; increase
exposure

Minimal effect

Reduced (increased)
exposure of parent drug

Increased (decreased)
exposure of parent drug

Reduced (increased)

biliary excretion and

increased (decreased)
exposure

Decreased (increased)
biliary excretion and
increased (decreased)
hepatic exposure of
parent drug

Reduced (increased)
exposure of parent drug

Exposure if substrate for
uptake transporter and
non-substrate of efflux

transporter

Decreased (increased)
CNS exposure

Increased (decreased)
CNS exposure if a
substrate for uptake

transporters

Primarily eliminated as
unchanged drug in the
bile or the urine

No noted trend

May inhibit hepatic
uptake transporters and
reduce biliary excretion;
increase exposure

*Predicted effects are accurate for ~70% of drugs
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There is a marked distinction between extensively and poorly metabolized compounds:
compounds in class 1 and 2 tend to attribute = 70% of their disposition to metabolism, while
classes 3 and 4 are primarily eliminated as unchanged drug and tend to attribute < 30% of their
elimination to metabolism, with few drugs having an intermediate extent of metabolism.
Solubility is defined by FDA standards. While solubility was classified by dose number of the
minimum solubility of the highest dose strength of the formulated drug at 37 °C over the pH
range of 1 to 7.5 initially, the pH range has recently been adjusted to 1 to 6.8(51), which more
accurately reflects the physiology of the gut. When the dose number < 1 the drug is considered
highly soluble and when the dose number > 1 the drug is considered poorly soluble(211). The
classification system and predictions are detailed in Box 1.

It is important to recognize that the predictions Wu and Benet(48) proposed with regard
to BDDCS were based on observations, not theory. These observations were supported by a
broad knowledge of the pharmacokinetics of drugs including major elimination route and an
understanding of metabolizing enzymes and transporters and their interactions. From these
observations, they proposed 22 dispositional predictions for approved drugs belonging to each
class(48). Wu and Benet were unable to identify any clinically relevant transporter effects in the
gut or the liver for the BDDCS Class 1 drugs for the 153 drugs initially classified in the BDDCS.
Briefly, class 1 drugs are expected to experience potentially clinically relevant dispositional
changes when metabolizing enzymes are affected, but not when transporters are affected. As
extensive metabolism necessitates extensive absorption, the BDDCS may be useful in granting
biowaivers of some class 1 drugs, which has been implemented in EMA guidances(213), was
supported by FDA scientists(55), and has recently been incorporated into a guidance(51). Class
2 drugs may experience clinically relevant changes from both metabolizing enzymes and efflux
transporters in the gut, liver, and brain and uptake transporters in the liver and brain. Class 3

and 4 drugs are unlikely to be affected by changes in metabolism, but may be affected by
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uptake or efflux transporters in the gut, liver, or brain. Clinically relevant transporter effects in
the kidney have yet to be ascertained, though we have discussed the likely effects(87).
Recent work in our laboratory and others has progressed toward expanding the
applications of BDDCS and applying the predictions to new molecular entities. The utilities of
BDDCS are enumerated in various publications(48,50,87). BDDCS can be used in both
discovery and development. Predictions include drug-drug interactions (DDIs),
pharmacogenomic effects, food effects, endogenous substrate effects, distribution, and
elimination route. As our understanding of drug transporters and metabolizing enzymes
progresses, so do the applications of this system. BDDCS may predict toxicity, transporter-
mediated drug resistance, and environmental impacts, and may inform drug delivery and
dosage. Indeed, BDDCS could be a powerful predictive tool any time a drug transporter is

involved in a physiological process.

CURRENT BDDCS PREDICTIONS

Predicting Drug-Drug Interactions

Of all Americans, 21.7%, and of Americans older than 65 years, more than 65%, take 3
or more prescription drugs(214). When taking 2 or more drugs, the safety or efficacy of one or
more drugs may potentially be compromised by one of the other drugs (DDls). BDDCS can
qualitatively predict when the inhibition or induction of metabolizing enzymes or uptake or efflux
transporters in the gut or liver may alter a drug’s pharmacokinetic profile and therefore efficacy
and safety. Concomitantly administered drugs and endogenous compounds may induce and/or
inhibit transporters and/or enzymes, while genomic differences can alter the expression or
activity of transporters or enzymes.

As BDDCS Class 1 drugs are unaffected in a clinically relevant manner by the inhibition

or induction of drug transporters, one obvious and major advance of BDDCS is waiving
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substrate transporter studies for an extensively metabolized, highly soluble compound. BDDCS
class 1 drugs do not need to be evaluated as substrates of transporters and, if they are
substrates in vitro, clinical studies do not need to be conducted. As BDDCS class 1 drugs
comprise 40% of marketed drugs and 18% of new molecular entities(87), waiving transporter
substrate studies would substantially reduce the developmental burden. However, while BDDCS
class 1 drugs are unlikely to be victims of a transporter-mediated DDI, their status as inhibitors
or inducers of transporters should be assessed, as they may still perpetrate transporter
inhibition or induction and may clinically affect a non-class 1 drug.

BDDCS class should inform substrate selection in DDI studies. The FDA interaction
guidance recommends metabolizing enzyme and transporter substrates to test if an NME is an
inhibitor or an inducer of an enzyme or transporter(9). While the enzyme substrates are all
extensively metabolized BDDCS class 1 and 2 substrates and are therefore appropriate for in
vitro and in vivo interaction studies, some of the substrates listed for transporter interaction
studies are class 1 compounds. Use of class 1 compounds as substrates in vivo may incorrectly
suggest that the transporter in question is not inhibited or induced, which in fact may be

apparent when using a class 2, 3, or 4 substrate (victim) drug.

Impact of Pharmacogenomics, Endogenous Substrates, and Food Effects

BDDCS can predict when pharmacogenetic variants or endogenous compounds may
have an impact on a drug’s pharmacokinetics (Box 1). For instance, a poorly permeable BDDCS
class 3 or 4 drug will not be clinically impacted by genetic variants of CYP2C19, while a high
permeability rate drug will need to be evaluated for CYP2C19 metabolism, since about 20% of
Asians lack expression of CYP2C19 and do not metabolize its substrates(73), while
pharmacogenomic differences in transporters are unlikely to impact the safety and efficacy of a
class 1 drug. Concentrations of endogenous compounds can be increased or decreased by

disease, and can act as inhibitors or inducers of transporters and metabolizing enzymes.
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Importantly, the FDA recommends that investigational drugs be evaluated for pharmacokinetic
changes in patients with impaired renal function or end-stage renal disease as transporter
and/or enzyme inhibition from high concentrations of uremic toxins may alter pharmacokinetics,
even if the compound is not renally eliminated(117). Additionally, diet can impact a drug’s
pharmacokinetics. BDDCS can correctly predict effects of high-fat meals on bioavailability for

about 70% of drugs(90).

PREDICTING DISTRIBUTION AND ELIMINATION

Central Nervous System Effects

During discovery and development, BDDCS can predict when central effects may or
may not occur. P-gp has the potential to modify brain concentrations. It was hypothesized that
for a drug to successfully penetrate and reside in the brain to achieve a pharmacodynamic
effect, a drug should not be a P-gp substrate, while to avoid a central effect, e.g. drowsiness
with antihistamines, a drug can be designed as a P-gp substrate. However, we have recently
demonstrated that highly permeable/extensively metabolized, highly soluble (BDDCS class 1)
compounds can have a central pharmacodynamic effect at clinically approved doses, even if the
drug is a substrate for P-gp, regardless of whether the effect is desired(108). Therefore, it is
preferable for a peripherally acting drug to be either poorly permeable and a non-substrate for
uptake transporters in the brain, or poorly soluble and a P-gp substrate— or both— while efflux
is not a concern in the efficacy of highly permeable/highly soluble drugs intended for central

effects.

Predicting Elimination Routes
As BDDCS recognizes that compounds with a high intestinal permeability rate will be

extensively metabolized, we can usefully predict which of the three major routes of elimination:
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metabolism, renal excretion of unchanged drug, or biliary excretion of unchanged drug, will
predominate in a drug’s elimination. We have shown that the primary elimination route can be
well predicted using in vitro permeability rates to predict the extent of metabolism, segregating
classes 1 and 2 from 3 and 4, while two computed molecular features of a drug: metabolic
stability and polarizability, can then predict if a poorly metabolized drug is eliminated in the bile
or the urine as unchanged drug(17,23). These predictions may be very valuable during drug
discovery and development. The major route of elimination can significantly impact if a drug can
be safely and effectively administered to patients. For instance, renal elimination of unchanged
drug should be avoided in patients with kidney failure. As such, drugs intended for treatment of
a disease with significant comorbidity with renal failure, e.g. diabetes, should be designed with
the expectation that they are eliminated by metabolism or in the bile. Alternatively, discovery
scientists could adopt prediction of the major elimination route as a means of delivery to a target

organ, such as the liver.

ADDITIONAL APPLICATIONS OF BDDCS

Toxicity Predictions

Additionally, BDDCS may predict when certain drug-induced toxicities, such as Torsade
de Pointes (TdP)(215), Drug Induced Liver Injury (DILI)(216), and anti-epileptic drug cutaneous
hypersensitivity(217), may be a clinical concern. BDDCS has linked a major role of intestinal
metabolism and intestinal transporters in drug induced toxicity. For example, BDDCS helped
schematize for which drugs hERG (human Ether-a-go-go Related Gene) voltage-gated
potassium channel inhibition is likely to result in TdP(218,219) from drug-drug interactions due
to CYP or P-gp inhibition(210). For BDDCS class 2 hERG inhibitors that are also substrates of
both CYP and P-gp, the dual inhibition of metabolism and transport could significantly increase

the plasma concentration leading to more cases of severe toxicity. For BDDCS class 1 hERG
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inhibitors, the effect of P-gp should be less pronounced and result in a more moderate toxicity.
BDDCS class 3 and class 4 drugs are less likely to be hERG inhibitors and therefore less likely
to cause TdP. BDDCS may help characterize drugs with severe toxicity potential by better
understanding their extent of metabolism and transporter interplay with other physicochemical

properties and/or biomarkers that can be associated with toxicity.

Drug Resistance

Conditions provoked by rapidly evolving cells, e.g. cancer cells or bacteria, can be
subject to drug resistance. This resistance is often mediated by the increased expression or
activity of drug efflux transporters on the target cell. BDDCS class 1 drugs, which are not

clinically affected by transporters, may therefore be protected from drug resistance.

Environmental Implications and Dose Differences

Recently, Daughton(220) suggested that BDDCS could be used in an attempt to
decrease environmental exposure of active pharmaceutical ingredients. In particular, BDDCS
class 1 drugs are likely to leave smaller environmental levels due to good absorption and
significant biotransformation, while hypothesizing that class 4 drugs require higher doses as a
result of poor permeability and poor solubility and thus generally poor absorption and are
primarily excreted unchanged, resulting in higher environmental levels. We therefore analyzed
dosages between the four classes and noted significant differences in doses between the
classes, such that class 4 compounds were dosed significantly higher than all the other classes
when a compound was given orally and higher than classes 1 and 2 when a compound was
administered intravenously (Chapter 4, Figure 4-2). A possible explanation for higher required
doses would be a higher clearance for class 4 compounds, but we actually saw the opposite
trend—that class 1 compound had higher clearance than the other classes—and therefore this

is not a plausible explanation (data not shown). We also note that class 3 compounds are
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significantly overrepresented in the intravenously administered compounds, likely a result of
necessity of intravenous dosing due to poor permeability rate and ease of dissolution due to

high solubility.

THE SELF-CORRECTING ASPECTS OF BDDCS ASSIGNMENTS

Benet et al. compiled a list of over 900 drugs containing the BDDCS class, properties of
the drug including administration route and fraction of the drug excreted unchanged in the urine,
and various physicochemical parameters such as solubility, partition coefficient (LogP) and
molecular weight(54). One advantage to understanding this system is that BDDCS class
indicates if a drug is extensively (= 70%) or poorly (< 30%) metabolized, which, when combined
with the fraction of the drug excreted unchanged in the urine, was used to create a dataset of
compounds eliminated primarily as unchanged drug in the bile. As a result, we were able to
develop a system presented in chapters 2 and 3 for predicting the major elimination route using
in vitro permeability rate measurements to predict the extent of metabolism followed by a
2-feature logistic regression model including calculated metabolic stability and polarizability that
predicts when a poorly permeable, orally-administered drug is likely to be eliminated primarily as
unchanged drug in the bile or primarily as unchanged drug in the urine(23).

Here we show that BDDCS has a feedback quality whereby its properties make
mistakes obvious to allow reflection of reported properties (i.e. metabolism and solubility) and
correct itself. This may not be immediately apparent upon classification, but as drug studies
progress, outliers become glaring and demand revisiting. BDDCS errors generally stem from
poorly reported data. Given that BCS or BDDCS classification is becoming relatively common in
the pharmaceutical industry, new molecular entities may be less susceptible to mistakes, since
most drugs were initially classified from a variety of literature sources whose measurements
were not developed to predict BCS or BDDCS class. Updated and selective methodology and

experiments conducted at single sites may provide more accurate measurements and
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predictions. We have not yet seen verified exceptions where the drug does not match the

predicted dispositional rules.

Corrections Recognized by Discrepancies Between Permeability Rate and Extent of Metabolism
When we considered in vitro permeability rate as a predictor of the extent of metabolism,
we discovered that flecainide(185), clonidine(170,183), metoclopramide(139),
phenazopyridine(139), and pindolol(183), while listed as BDDCS class 3 and 4 compounds(54),
were highly permeable in vitro. Thus, upon further investigation, it was noted that these
compounds are extensively metabolized(196,198-201). Literature indicated that colchicine is a
low permeability rate drug, while we initially classified colchicine as BDDCS class 1. We realized
that this compound was eliminated in the bile (Table 5-1). Importantly, colchicine was also
identified as the sole false negative of highly permeable BDDCS class 1 compounds that were
P-gp substrates when predicting CNS exposure(210). Aliskiren and cefoperazone are poorly
permeable and eliminated in the bile(221,222), although we initially classified them as
extensively metabolized/highly permeable. We utilized aliskiren as an external validation
compound in our model predicting when biliary elimination is the major route of elimination and
adjusted its class to class 3 for further studies. Diclofenac was listed with a high solubility, but a
much lower solubility has been reported(223) (Table 5-2), resulting in a dose number of 1.4, and
therefore necessitated a classification change to class 2. Changes to BDDCS class are listed in

Table 5-1. Changes to BDDCS class or listed properties are listed in Table 5-2.
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Table 5-1. BDDCS Class Changes from Initial Publication

Listed Updated
Compound Class* Class Major route of elimination
Aliskiren 1 3 Biliary
Cefoperazone 1 3 Biliary
Clonidine 3 1 Metabolism
Colchicine 1 3 Biliary
Dabigatran 3 4 Renal
Diclofenac 1 2 Metabolism
Flecainide 3 1 Metabolism
Metoclopramide 3 1 Metabolism
Phenazopyridine 4 2 Metabolism
Pindolol 3 1 Metabolism
Pitavastatin 2 4 Biliary
Saxagliptin 3 1 Metabolism
Tiagabine HCI 2 1 Metabolism

* As listed in Benet et al.(54)

Table 5-2. Parameter Changes from Initial Publication

Updated Parameter

Compound Parameter Value Listed* Value
%Dose Excreted as Unchanged Drug in Urine

Memantine 71 48
Pravastatin 20 47
Ranitidine 30 69

Rosuvastatin 5 30

Solubility
Atorvastatin 0.0000204 mg/mL 0.0204 mg/mL
Diclofenac 9 mg/mL 0.14 mg/mL
Administration Route

Enalaprilat Oral Intravenous

Vancomycin Oral Intravenous

Tiotropium Bromide Oral Inhaled

* As listed in Benet et al.(54)

Discrepancies in Predicted and Actual Elimination Route
During development of our model predicting the major route of elimination of orally
administered BDDCS class 3 and 4 drugs, we believed ranitidine was misclassified, having a

listed fraction excreted unchanged in the urine as 30%, but was predicted as primarily
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eliminated in the urine. We discovered that the fraction of the bioavailable dose excreted in the
urine was actually 69%, and was therefore correctly predicted(155). In this publication, we
considered efflux transporters of biliarily eliminated drugs. Saxagliptin was incorrectly predicted
by the model and was not noted to be a substrate of any efflux transporters, as expected. After
inspecting its approval package, we realized that saxagliptin is extensively metabolized(224)
and amended its class to class 1. In this same investigation, vancomycin was predicted to be
eliminated in the bile, despite being primarily eliminated in the urine. Here, we realized that
vancomycin was listed as orally dosed, despite primarily being administered intravenously and
is unabsorbed and intended for pseudomembranous colitis when administered orally. A similar
anomaly was observed with tiotropium bromide, which is an inhaled drug(225). We recognized
that successful segregation of renally and biliarily eliminated drugs was limited to orally
administered drugs by this model, where some non-orally administered drugs that are renally
eliminated could be confounded with [orally or non-orally administered] biliarily eliminated drugs.
Enalaprilat was correctly identified, but was initially listed as an orally administered compound,
but is in fact given intravenously. Characteristic changes of drugs unrelated to BDDCS class are

listed in Table 5-2.

Additions to BDDCS

While building this model, we also considered the fate of recently approved drugs. Three
compounds were labeled with significant biliary elimination (afatinib, teriflunomide, vismodegib).
These compounds will therefore be classified as BDDCS class 3 or 4. The following compounds
were published in a dataset(37) compiling when biliary excretion was significant and have been
assigned class 3 or 4: cefbuperazone , cephaloridine, emepronium, flomoxef, indocyanine
green, and temafloxacin. More than 175 additions to BDDCS classification, including these

listed above and other compounds recently classified(68,74) are listed in Table 5-3.
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Table 5-3. Newly BDDCS Classified Drugs

Drug

Class

Afatinib
Alclofenac
Alpidem
Amifloxacin
Amineptine
Aminosalicylic Acid
Axitinib
Azimilide
Bendazac
Benoxaprofen
Benzarone
Benzbromarone
Benziodarone
Benzonatate
Benzphetamine
Benztropine
Betaine
Bethanechol
Bidisomide
Boceprevir
Brexpiprazole
Bromfenac
Brotizolam
Canagliflozin
Carbinoxamine
Carbovir
Carisoprodol
Cefbuperazone
Cefcanel
Cefmenoxime
Cefoperazone
Cefpirome
Ceftolazone
Cephaloridine
Chlorhexidine
Chlormezanone
Chlorpropamide
Cinchophen
Ciprofibrate
Clinafloxacin

w
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Clomacran
Clometacin
Clopamide
Cobicistat
Cotinine
Crizotinib
Cyclofenil
Dabrafenib
Daclatasvir
Dapagliflozin
Dasabuvir
Deferasirox
Dexfenfluramine
Dexloxiglumide
Dihydralazine
Dihydroergotamine
Dolutegravir
Dopamine
Droxicam
Ebrotidine
Edoxaban
Eltrombopag
Emepronium
Empagliflozin
Encainide
Enprofylline
Fenclozic Acid
Fenoterol
Fenoprofen
Fialuridine
Finafloxacin
Fipexide
Flavoxate
Flibanserin
Flomoxef
Flucloxacillin
Flupirtine
Fosaprepitant
Fosfluconazole
Fosinapril
Fosinaprilat
Fusidic Acid
Genistein
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Glafenine
Guanethidine
Ibufenac
Indocyanine green
Iproniazid
Isocarboxazid
Isoproterenol
Isoxepac
Ivacaftor
Ketotifen
Ledipasvir
Lesinurad
Levovirin
Licarbazepine
Liothyronine
Lofexadine
Lumiracoxib
Meclizine
Meclofenamic acid
Mepazine
Mephenytoin
Metaproterenol
Methapyrilene
Methimazole
Methoxsalen
Methysergide
Metolazone
Metyrapone
Metyrosine
Mibefradil
Mifepristone
Nedocromil
Nemonapride
Nialamide
Nisoldipine
Nomifensine
Olaparib
Ombitasvir
Oxandrolone
Oxymetholone
Oxyphenisatine
Oxytetracycline
Pargyline
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Paritapravir
Paromomycin
Pasireotide
Pazopanib
Pelrinone
Pemoline
Penbutolol
Peramivir
Perampanel
Phencyclidine
Phendimetrazine
Phenformin
Phenoxybenzamine
Phentermine
Phentolamine
Physostigmine
Pinacidil
Pirprofen
Practolol
Pralidoxime
Procyclidine
Rebamipide
Roquinimex
Rilpivirine
Sabeluzole
Sapropterin dihydrochloride
Sertindole
Simeprevir
Sinitrodil
Sofosbuvir
Tasosartan
Telapavir
Temafloxacin
Temocaprilat
Teriflunomide
Tedizolid phosphate
Tesaglitazar
Thiotepa
Tiapride
Ticagrelor
Ticrynafen
Tolrestat
Tranexamic Acid
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Troglitazone
Trovafloxacin Acid
Trovafloxacin Mesylate
Vandetanib
Vemurafenib
Vismodegib
Vorinostat
Xamoterol
Yohimbine
Zomepirac
Zotepine

NN-=2WNBEDNN-=2WNDN

In Table 5-3, we added boceprevir, a drug used to treat hepatitis C. The highest dose
strength of boceprevir is a 200 mg capsule, although 4 of these capsules are indicated per
administration. Therefore, although the summary basis of approval classifies this drug as a low
solubility class 4 drug based on a dose of 800 mg, we have classified this drug as a BDDCS
class 1 drug based on the highest dose strength of 200 mg. In cases like bocepreuvir,
classifications can sometimes be misleading, but classification consistency is necessary.
BDDCS uses the FDA definition of solubility, as indicated in bioequivalence guidelines(51).
However, the solubility criteria differ between regulatory agencies. The EMA has recently
recommended that the highest dose given in a single setting according to a drug’s labeling be
used to calculate the dose number for biowaivers(226,227). In general, this is some multiple of
the highest dose strength. For instance, if 80 mg was dosed in a single setting, but as two
40 mg tablets, where tablets greater than 40 mg were not developed, the FDA would allow
biowaivers on the basis of the 40 mg dose, while the EMA would require dose number
calculation based on an 80 mg dose. This can impact a few high-solubility compounds, shifting
their classification to a low-solubility class and different dispositional properties would be
predicted, particularly if the compound is highly permeable and extensively metabolized. The
approach recommended by the EMA is a more conservative approach and fewer drugs are

qualified for a biowaiver. This approach would also limit the percentage of class 1 drugs,
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imposing slightly stricter standards to predict when transport is clinically irrelevant. However,
this results in a change for only a small percentage of drugs. Solubility is a relatively inherent
property of the drug, and relatively few drugs have such a significant change in dose that will
result in a change of solubility classification. Recently, Sediq et al.(226) examined 27 drugs for
which a biowaiver monograph was published for changes in classification mediated by
differences in dose definition. Of the 27, only 4 (15%) of the drugs required a classification

change.

CAUTIONS

In their 2005 paper(48), Wu and Benet included a section under the heading “Cautions,”
where they stated, “There will always be exceptions to the broad general rules presented here.”
However, we have yet to see compelling evidence of drugs behaving outside of their predicted
effects by class. One of the most useful predictions from BDDCS, as noted earlier, is that the
clinical relevance of transporters for BDDCS class 1 drugs is negligible. While our outliers have
been explained by incorrectly reported or interpreted data leading to misclassification, any
predictive system will have some unexplained outliers. We expect that there may be violations
of our statement that BDDCS class 1 drugs are unaffected in a clinically relevant manner by the
inhibition or induction of drug transporters, but we are unaware at this time of documented
examples. Additional data may indicate the need to amend and/or grow BDDCS and generate
new hypotheses.

Most recently we have begun to consider the possibility of using BDDCS as a tool in
evaluating toxicity potential(217). Therefore, the expanded list of BDDCS drug classification
here (Table 5-3) includes many drugs that have been removed from the market as a result of
toxic manifestations. Expansion of the BDDCS classification list was particularly challenging
since for many drugs that came onto the market a number of years ago, and then removed

because of toxicity, little reliable information both in terms of metabolism and solubility can be
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found in the literature. Therefore, when a drug is on the border of two classes, the BDDCS class
is selected based on expected or known drug interactions. Finally, one of the reasons for drugs’
misclassification in BDDCS classes can be the simplified, binary, non-continuous structure of
BCS and BDDCS. This is particularly so for drugs lying on the border of two classes. While BCS
and BDDCS are classification systems based on binary decisions, each property is measured
on a continuous scale. It is therefore expected that compounds that approach the binary

boundaries may be more difficult to evaluate and inherently risk potential misclassification.

CONCLUSIONS

As we have developed models that confirm and inform BDDCS predictions, or utilized
BDDCS predictions to guide methods and hypothesis development, we have naturally
encountered drugs with surprising outcomes. In these cases, we can often explain outliers with
a model specific limitation or a physiological mechanism that overcomes the base prediction.
For instance, Broccatelli et al. predicted that highly permeable P-gp substrates that were not
class 1 would not be exposed to the central nervous system(108). Yet, in many cases, an
uptake transporter overwhelmed the effect of P-gp. However, when mechanistic explanations
cannot be determined, we often found that a misclassification was present in the initial dataset,
and when we reviewed the solubility or extent of metabolism, we realized that a correction to the
BDDCS classification was warranted.

BDDCS can self-correct when discrepancies are seen between predicted and observed
effects, as we have seen with drugs such as aliskiren, colchicine, and others. Results of a
BDDCS-based experiment often inform the analyst of the true BDDCS class, and, if other
factors cannot explain a discrepancy, the analyst should consider reviewing the extent of

metabolism and solubility of the drug to determine if reclassification is necessary.
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CHAPTER 6. CONCLUSIONS

The disposition and profile of each drug is dictated by the processes of absorption,
distribution, metabolism, and excretion. These processes are variable among individuals, and
even within individuals, depending on physiological factors including blood flow, pH, membrane
permeability, and innate expression and activity of proteins. These and other factors can be
affected by stimuli such as food, environment, diseases, or other drugs. Drugs may have
properties that allow an average estimation of their rate, extent, or localization of absorption,
distribution, metabolism, and excretion. Yet, since these processes can be easily disturbed from
average behavior by internal or external factors, understanding each process and what can
affect each process is crucial to ensuring the safety and efficacy of drugs.

The Biopharmaceutics Drug Disposition Classification System has incorporated decades
of research and progress into a simple system that predicts which drugs may be subject to
pharmacokinetic disruption from internal and external factors. It further has helped us to
understand the innate conditions dictating drug disposition. In particular, we were able to utilize
the simple observation of correlation between permeability rate and the extent of metabolism to
successfully predict the extent of metabolism using only in vitro data or less successfully in silico
predictions. Our investigation of this prediction has given us valuable insights into understanding

the mechanism of metabolism as an eliminating process in vivo.

INSIGHTS INTO METABOLISM FROM BDDCS

BDDCS was pivotal in observing that drugs with a high intestinal passive permeability
rate were also extensively metabolized. The rationale behind this observation is that highly
permeable drugs, when excreted into hydrophilic secretions, i.e. urine and bile, are rapidly
reabsorbed due to the high concentration gradients. This gives the drug multiple chances for
metabolism, until eventually the compound is changed to a generally more hydrophilic

substance that resides in fluidic secretions. Datasets examining reabsorbed compounds support
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this hypothesis. In a dataset published by Dave and Morris(212), 82% of drugs that were
reabsorbed from the kidney tubule were extensively metabolized drugs. In a dataset published
from Pfizer(34), slightly more than half of the extensively metabolized drugs were reabsorbed
from the kidneys compared to less than 20% of class 3 and 4 drugs(59). Renal reabsorption is
primarily a passive process driven by high tubular concentrations compared to the blood, though
reabsorptive transporters are functional and can play a role. By analyzing this dataset and using
permeability rate values generated from the same group, higher permeability rate compounds
tended to be reabsorbed, while lower permeability rate compounds were either passively filtered
or secreted (ROC AUC = 0.80).

Highly permeable drugs might also be reabsorbed directly from the biliary tract. When
phenolphthalein glucuronide was dosed directly into the bile and prevented from undergoing
enterohepatic recycling, it was recovered in hepatocytes, indicating that reabsorption from the
bile is possible(161). BDDCS predicts that if highly permeable BDDCS class 1 and 2 drugs are
initially secreted into the bile, they will be reabsorbed. This reabsorption process means that
drugs will eventually be metabolized as a necessary elimination step. This is particularly
important for some low-clearance compounds such as diazepam, which are too lipophilic to
remain in secretions.

Passive permeability, not active transport or the extent of absorption, correlates with the
extent of metabolism. In this way, extensive metabolism can be predicted with immortal cell
lines such as Caco-2 and MDCK, which express low transport levels, or even artificial
membranes such as PAMPA. Artificial membranes do not express transporters and accurately
reflect passive permeability. This reduces the need for human tissue in evaluating metabolism
with microsomes, supersomes, or hepatocytes. Permeability rate does not necessarily correlate
with metabolic clearance, however.

Hosey and Benet showed that the extent of metabolism can be predicted with either in

vitro or in silico tools (Chapter 3 in thesis)(17). Extreme variability in permeability rate values
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persists between labs(165), and therefore numerical permeability rate cut-offs are incapable of
predicting the extent of metabolism or absorption. As a solution to this variability, metoprolol has
generally been regarded as a standard to determine high-permeability rate(166), above which
compounds were predicted to be extensively metabolized or highly absorbed. However,
metoprolol’s permeability rate is restrictively high when measured in MDCK or
Caco-2(13,17,167), mispredicting many extensively metabolized drugs because they had lower
permeability rates than metoprolol, and the alternative standards labetalol and zidovudine were
assigned for Caco-2 and MDCK, respectively(17) and correctly predicted more compounds
across several datasets. While metoprolol was far too conservative to be an effective standard
compound in Caco-2 or MDCK, it performs well as a standard in PAMPA(17). Theophylline was
selected as an optimal standard when permeability rate studies are conducted in PAMPA and is
also too conservative in MDCK or CACO-2. While BDDCS predicts that drugs that are highly
permeable in vitro will be extensively metabolized clinically, and therefore subject to changes in
metabolizing enzymes, in vitro systems are not interchangeable and unique protocols must be
established for each.

Additionally, from 20 datasets, 97+5% of compounds with a permeability rate greater
than metoprolol were extensively metabolized(17). While most compounds with a permeability
rate greater than the selected standards labetalol, zidovudine, or theophylline are extensively
metabolized, in many cases 20-25% of the compounds with a permeability rate lower than these
standards are also extensively metabolized. Therefore, while high permeability rate compounds
are almost always extensively metabolized, not all extensively metabolized compounds have a
high permeability rate. For increased predictability, a very low permeability rate marker,
chlorothiazide, was established. Most compounds with a permeability rate less than
chlorothiazide’s are poorly metabolized. The predictability of compounds with a permeability rate
between chlorothiazide and the reference standard is only around 50%, however, and these

compounds should be investigated in humans.
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INSIGHTS INTO THE ELIMINATION ROUTE OF UNCHANGED DRUGS

While we do not yet understand why compounds follow such dichotomous elimination
routes as exemplified by the observation that very few drugs exhibit intermediate extents of
metabolism, we were able to harness this information to predict the major route of elimination of
unchanged drugs. While biliary elimination is notoriously difficult to quantify in humans, we have
developed a system that predicts which compounds may be subject to biliary elimination. This
can help us predict potential complications of biliary elimination or be utilized to target biliary
elimination. Indeed, the system that we outlined in chapters 2 and 3 performs far better than
previous predictions, which relied on molecular weight and correctly predicted compounds as
biliarily eliminated only 12% of the time. While we have validated many of the drugs we
presume to be biliarily eliminated with clinical data, the lack of clinical data forces one to
extrapolate from metabolism and urinary excretion data. This system allows scientists to
understand when to examine hepatic apical and canalicular transporters that may interact with
drugs predicted to be eliminated in the bile, which may not necessarily be evaluated for drugs
expected to be metabolized. Indeed, many compounds predicted to be eliminated in the bile
may actually be metabolized. It also allows scientists to consider potential ramifications of
enterohepatic circulation, which can result in multiple peak concentrations and extended

residence time as well as multiple exposures to organs in the enterohepatic system.

PREDICTING BDDCS CLASS

There is great value in predicting BDDCS class prior to human dosing. BDDCS class
predictions could help direct preclinical and clinical studies during development. For instance,
substrate transporter studies are unlikely to be useful for BDDCS class 1 drugs, while
metabolism studies are unlikely to be useful for poorly permeable class 3 and 4 drugs.
Currently, the system relies on metabolic information gathered from clinical studies. Varma et

al.(139) have made great progress in predicting BDDCS class using only in vitro studies, which
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we have improved by ensuring the system can be extended to other laboratories. In chapter 3,
we statistically selected compounds to be used as permeability rate standards to predict the
extent of metabolism across various laboratories and permeability models. This was an
essential study, since numeric permeability rate varies extensively between laboratories and
must be standardized to control compounds. In chapter 4, we demonstrated that a dose of 100
mg will provide optimal solubility class predictions. Together these analyses can be universally
applied throughout the pharmaceutical industry to predict BDDCS class in vitro.

Ideally, we could use in silico predictions of BDDCS class to make similar decisions.
Unfortunately, attempts at predicting BDDCS class in silico have not been as successful as in
vitro predictions. Yet, our in silico BDDCS prediction strategy led to a useful decision tree
outlined in Figure 4-5. Despite the errors, this tree could still be applied to predict when some
transporter interaction studies are necessary. For instance, since most drugs predicted to be
class 1 or 2 actually belong to one of these classes, they do not need to be evaluated for gut
uptake transporters.

As we continue to understand the extreme variability of drug disposition, it is becoming
necessary to prioritize studies that are invaluable in providing safe and efficacious doses to
every individual. BDDCS allows us to assess potential modifiers of drug disposition, which can
be relevantly applied to populations, as well as to understanding and predicting interindividual
differences. In this thesis, we have discussed the expanded predictive utilities of BDDCS, and
developed methods of predicting various aspects of drug disposition. We have predicted major
elimination routes using simple features and have shown that BDDCS can be used in several
ways to predict every aspect of disposition: absorption, distribution, metabolism, and excretion.
The results of the work presented in chapter 2 can be initially applied during drug development
as a method of initially screening for potential biliary excretion of unchanged drug, with greater
predictivity than has previously been accomplished. Further, chapters 2 and 3 provide valuable

insights into potentially comprehending the difficult problem of predicting if a compound will be
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metabolized versus eliminated in the bile and emphasize the need for a greater understanding
of the intracellular processes that determine the fate of relatively poorly permeable drugs.
Chapter 3 improves upon our understanding of what dictates metabolism from a physiological
context and how we can predict major elimination routes prior to human dosing. Chapter 4
allows us the ability to potentially eliminate unnecessary transporter studies during drug
development using in silico methods and discusses the preclinical utility of in vitro BDDCS
predictions. Finally in chapter 5, we describe extensions of BDDCS that can be utilized at every
stage of development to guide dispositional understanding and its potential effectors, drug
selection, and even environmental decisions. BDDCS currently has extensive utility and we can

only envision its many future applications.
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Appendix Figure 1. Density vs Variables with Important Differences Between Orally and
Non-orally Administered Drugs. The distribution of orally administered drugs is shaded blue,

while the distribution of non-orally administered drugs is shaded red.
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Appendix Figure 2. Boxplots of the Percent of Plasma Protein Binding of Drugs that Are
Eliminated in the Bile or the Urine for orally administered (left) or nonorally administered
(right) drugs. The box represents the values between the 25 and 75 percentile and the median.
Tukey-defined extremes are represented by the whiskers and outliers are represented as

individual datapoints.
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